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Lecture VI– Regression
(Linear Methods for Regression)

Contents:
• Linear Methods for Regression

• Least Squares, Gauss Markov Theorem
• Recursive Least Squares
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Linear Regression Model
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The linear model either assumes that the regression function f(x) is linear , or that 
the linear model is a reasonable approximation. 
The inputs x can be :

• Quantitative inputs
• Transformations of quantitative inputs such as log, square root etc.
• Basis expansions (e.g. polynomial representation) :
• Interaction between variables : 
• Dummy coding of levels of qualitative input

In all these cases, the model is linear in the parameters, even though the final 
function itself may not be linear.
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Power of Linear Models
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g() y x( ) = f x, w( ) = g wT x + w0( )

if g() is linear:  only linear functions can be modeled
however, if x is actually preprocessed, complicated functions can be 
realized
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Least Squares Optimization

Least Squares Cost Function

Minimize Cost
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What are we really doing ?
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We seek the linear 
function of X that 
minimizes the sum of the 
squared residuals from Y 

Linear least squares fitting
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More insights into the LS solution

The Pseudo-Inverse
pseudo inverses are a special solution to an infinite set of solutions of a 
non-unique inverse problem (we talked about it in the previous lecture)
the matrix inversion above may still be ill-defined if XTX is close to 
singular and so-called Ridge Regression needs to be applied

Ridge Regression

Multiple Outputs: just like multiple single output regressions
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Geometrical Interpretation of LS

Subspace S spanned 
by the columns of X

X[ ]1

X[ ]0

t
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y is an orthogonal 
Projection of  t on S

Vector of residual 
errors (othorgonal to y)
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y is the optimal reconstruction of t in the range of X
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Physical Interpretation of LS

• all springs have the same spring constant
• points far away generate more “force” (danger of outliers)
• springs are vertical
• solution is the minimum energy solution achieved by the springs

x

y
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Minimum variance unbiased estimator

Least Squares estimate of the parameters w has the smallest variance among 
all linear unbiased estimates.

Least Squares are also called BLUE estimates – Best Linear Unbiased Estimators

Gauss-Markov Theorem
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In other words, Gauss-Markov theorem says that there is no other 
matrix C such that the estimator formed by 
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(Homework !!)



Lecture VI: MLSC  - Dr. Sethu Vijayakumar 10

Gauss-Markov Theorem (Proof)
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Gauss-Markov Theorem (Proof)
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Biased vs unbiased
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Bias-Variance decomposition of error

Gauss-Markov Theorem says that Least Squares achieves the estimate with the 
minimum variance (and hence, the minimum Mean Squared Error) among all the 
unbiased estimates (bias=0).

Does that mean that we should always work with unbiased estimators ??

No !! since there may exists some biased estimators with a smaller net mean 
squared error – they trade a little bias for a larger reduction in variance.

Variable Subset Selection and Shrinkage are methods (which we will explore 
soon) that introduce bias and try to reduce the variance of the estimate.



Lecture VI: MLSC  - Dr. Sethu Vijayakumar 13

Recursive Least Squares

The Sherman-Morrison-Woodbury Theorem

More General: The Matrix Inversion Theorem

Recursive Least Squares Update
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Recursive Least Squares (cont’d)

Some amazing facts about recursive least squares
Results for W are EXACTLY the same as for normal least squares update 
(batch update) after every data point was added once! (no iterations)
NO matrix inversion necessary anymore
NO learning rate necessary
Guaranteed convergence to optimal W (linear regression is an optimal 
estimator under many conditions)
Forgetting factor λ allows to forget data in case of changing target functions
Computational load is larger than batch version of linear regression
But don’t get fooled: if data is singular, you still will have problems!


	Lecture VI– Regression    (Linear Methods for Regression)
	Linear Regression Model
	Power of Linear Models
	Least Squares Optimization
	What are we really doing ?
	More insights into the LS solution
	Geometrical Interpretation of LS
	Physical Interpretation of LS
	Minimum variance unbiased estimator
	Gauss-Markov Theorem (Proof)
	Gauss-Markov Theorem (Proof)
	Biased vs unbiased
	Recursive Least Squares
	Recursive Least Squares (cont’d)

