

Overview

- Model Complexity
- · Model Selection & Regularization Theory
 - Crossvalidation & Other Techniques
 - MDL, Occam's Razor
 - Bayesian Model Selection

Concept Learning Example

• Given.

- Instances X : Possible days, each described by the attributes *Sky, AirTemp, Humidity, Wind, Water, Forecast.*
- **Target Function c** in *C*: EnjoySport : X->{0,1}
- **Hypotheses** *H*: Conjunction of literals. E.g. < *Cold*, *High*, ?,?,? >
- Training Examples D: Positive and negative examples of target function.<{x1,c(x1)},...{xm, c(xm)}

• Determine.

- A hypothesis h in H such that h(x)=c(x) for all x in D?
- A hypothesis h in H such that h(x) = c(x) for all x in X?

True Error of Hypothesis

Instance Space X

Definition: The true error (denoted $error_D(h)$) of hypothesis h with respect to target concept *c* and distribution *D* is the probability that *h* will misclassify an instance drawn at random according to *D*

$$error_D(h) \equiv \Pr_{x \in D}[c(x) \neq h(x)]$$

Two notions of error

- *Training error* of hypothesis h with respect to target concept cHow often $h(x) \neq c(x)$ over training instances.
- *True error* of hypothesis h with respect to target concept cHow often $h(x) \neq c(x)$ over future random instances.

Our concern

- Can we bound the true error of **h** given the training error of **h** ?
- Consider the case when the training error of h is zero, or h belongs to the version space of D i.e. $h \in VS(D)$

$$VS_{H,D} = \left\{ h \in H \mid (\forall \langle x, c(x) \rangle \in D)(h(x) = c(x)) \right\}$$

Exhausting the Version Space

Hypothesis space H

Definition: The version space $VS_{H,D}$ is said to be ϵ -exhausted with respect to c and \mathcal{D} , if every hypothesis h in $VS_{H,D}$ has error less than ϵ with respect to c and \mathcal{D} .

$$(\forall h \in VS_{H,D})error_{\mathcal{D}}(h) < \epsilon$$

Sample Complexity

What is the number of samples needed to ε-exhaust the VS ??

Theorem: [Haussler, 1988] If the hypothsis space H is finite, and D is a sequence of $m \ge 1$ independent random examples of some target concept c, then for any $0 \le \epsilon \le 1$, the probability that the version space with respect to H and D is not ϵ -exhausted (with respect to c) is less than

$$|H|e^{-\epsilon m}$$

This bounds the probability that any consistent learner will output a hypotheses h with $error_{\mathcal{D}}(h) \geq \epsilon$. If we want the probability to be below δ

$$|H|e^{-\epsilon m} \leq \delta$$

then

$$m \geq \frac{1}{\epsilon} (ln|H| + ln(1/\delta))$$

PAC Learnability

Consider a class C of possible target concepts defined over a set of instances X of length n and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distribution D over X, ϵ such that $0 < \epsilon < 1/2$ and δ such that $0 < \delta < 1/2$, learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon, 1/\delta, n$ and size(c).

Approximately <

Probably

PAC=Probably Approximately Correct

PAC learnability of Boolean literals

How many examples are sufficient to assure with probability at least $(1 - \delta)$ that

every h in $VS_{H,D}$ satisfies $error_D(h) \leq \epsilon$.

Use the theorem:

$$m \ge \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$$

Suppose H contains conjunctions of constraints up to n boolean attributes (i.e., n boolean literals). Then, $|H| = 3^n$ and

$$m \geq \frac{1}{\epsilon}(ln3^n + ln(1/\delta))$$
$$m \geq \frac{1}{\epsilon}(nln3 + ln(1/\delta))$$

PAC learnability of Boolean literals: An example

...if we want to assure that with probability 95%, VS contains only hypothesis with $error_D(h) \leq 0.1$ in a learning example with up to 10 boolean literals, then it is sufficient to have m examples, where

$$m \geq \frac{1}{\epsilon}(nln3 + ln(1/\delta))$$
$$m \geq \frac{1}{0.1}(10ln3 + ln(1/0.05))$$
$$m \geq 140$$

Notice that m grows...

- linearly in number of literals n
- linearly in $\frac{1}{\epsilon}$
- logarithmically in $\frac{1}{\delta}$

Other Measures of Model Complexity

• VC Dimension [Vapnik-Chernovenkis]

- Provides a general measure of complexity of a learning system.
- Provides bounds on optimism (on errors expected from the system).

Assume a class of indicator function: $\{f(x,\alpha)\}$ with parameters α and $x \in \Re^p$

Definition: The VC dimension of the class $\{f(x,\alpha)\}$ is defined to be the largest number of points (in some configuration) that can be shattered by members of $\{f(x,\alpha)\}$.

Shatter: A set of points is said to be shattered by a class of functions if, no matter how we assign a binary label to each point, a member of the class can perfectly separate them.

Note: Hence, if VC dimension is d, then there exists a set of d points that can be shattered but there is no set of d+1 points that can be shattered

Example: Class of lines in a plane can shatter 3 points with arbitrary labeling. However, any configuration of 4 points that cannot be shattered with the labeling shown in panel four.

Hence, VC dimension of a line in a plane is 3.

How is it different from number of parameters ?? Check out the next example !!!

VC dimension of a indicator function $sin(\alpha x)$ with one parameter is **infinite**.

Lecture V: MLSC - Dr. Sethu Vijayakumar

Sample Complexity and VC dim.

How many randomly drawn training examples suffice to PAC learn any target concept C ?

Or how many examples suffice to ϵ -exhaust the version space with probability (1- δ)?

Using VC dim. as a measure of complexity of H [Blumer et al., 89] : $m \ge \frac{1}{\varepsilon} (4\log_2(2/\delta) + 8VC(H)\log_2(13/\varepsilon))$

Recall and compare bounds using |H| (size of hypothesis space):

$$m \ge \frac{1}{\varepsilon} (\ln |H| + \ln(1/\delta))$$

Comparisons:

- VC(H) bounds are defined even for infinite hypothesis spaces
- Usually, the bounds using VC(H) are tighter than those using |H|

VC Dimension (cont'd)

VC dimension of real valued functions $\{g(x,\alpha)\}$: is the VC dimension of the indicator class $\{I(g(x,\alpha)-\beta>0)\}$, where β takes the values over the range of g.

Estimation of Bounds on Prediction Error based on VC dimension (h)

$$L(\alpha) = \int \frac{1}{2} |y - f(x, \alpha)| dP(x, y) \quad : \text{ Generalization Error}$$
$$L_{emp}(\alpha) = \frac{1}{2N} \sum_{i=1}^{N} |y_i - f(x_i, \alpha)| \quad : \text{ Empirical (training) Error}$$

For a machine with VC dim=h, the following bound holds with probability1- η

$$L(\alpha) \le L_{emp}(\alpha) + \sqrt{\frac{h(\log \frac{2N}{h} + 1) - \log \frac{\eta}{4}}{N}}$$
 : Error Bounds

Model Selection/Assessment

Model Selection

Estimating the performance of different models in order to choose the (approximate) best one.

Model Assessment

Having chosen a final model, estimating it's prediction (generalization) error

If we are in a data rich environment, then divide the data set into :

Train	Validation	Test
-------	------------	------

Otherwise,

• we **recycle** the validation set as the test set (**efficient sample reuse**) - at the expense of underestimating the true test error of the chosen model.

• Use analytical methods to approximate the validation step

Model Selection Procedures

- Crossvalidation `
- Bootstrap

(*Efficient sample reuse methods*) Makes no prior assumption about the models

- Regularization
- Structural Risk Minimization
- Minimum Description Length
- Bayesian Model Selection / BIC

(*Analytical* + *some sample reuse*) Incorporates prior knowledge about the models under consideration and aims for simpler models

Model Selection Procedures (I)

Crossvalidation

Divide a given data set into two parts – a *training* set and *testing (validation)* test. Train models of various complexity and test their *generalization* on the validation set.

+ *n-fold* crossvalidation and *leave-one-out* crossvalidation

A typical performance curve of the [errors vs. model complexity] looks like this:

Training set error keeps decreasing as the model complexity increases. Testing/Validation set error (typically) decreases initially and then, starts to increase again.

Lecture V: MLSC - Dr. Sethu Vijayakumar

Example: Leave-one-out Crossvalidation

Notation for leave-one-out CV error:

$$J_{CV} = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_{i,-i})^2$$

Note that this can be computationally very expensive for some network, and very cheap for others.

=> optimal degree of polynomial is 4 or 5

Model Selection Procedures (II)

Regularization

In this approach, we write an *augmented error function* :

 $E = error on data + \lambda \cdot model complexity$

The second term penalizes the complex models with large variance. λ is the parameter specifying the weight of the penalty. Too large λ results in strong bias. λ is optimized (usually) using crossvalidation.

For instance: add penalty term to MSE cost function, e.g., a smoothness prior

$$\tilde{J} = J + \gamma P$$
$$P = \int \left(\frac{d^2 y}{dx^2}\right)^2 dx$$

We will see more instances and examples of various types of regularization at appropriate junctures along the course...

Model Selection Procedures (III)

Structural Risk Minimization (SRM) [Vapnik]

- Assumes we have a set of models ordered in terms of their complexity.
 - Polynomials of increasing degree (complexity = number of free parameters)
 - Models ordered according to VC dimension ($h_1 < h_2 < ...$)

• SRM corresponds to finding the model that is *simplest in the order of complexity* while while performing the best in terms of empirical (training) error.

A very successful application of the SRM principle is the **Support Vector Machines (SVM)** – a paradigm based on the principle of **maximizing margins** & in turn **reducing the VC dimension** of approximation candidates.

Model Selection Procedures (IV)

Minimum Description Length (MDL) [Rissanen,1978]

- Motivated from the field of Information theory Coding length.
- Out of all the models that describe the data well, we want to have the *simplest models* since that lends to the shortest description length (coding) for representation.

Applied to Model Selection: model M, parameter θ , data D=(X,y)

$$length = -\log \Pr(\mathbf{y} \mid \boldsymbol{\theta}, \boldsymbol{M}, \mathbf{X}) - \log \Pr(\boldsymbol{\theta} \mid \boldsymbol{M})$$

Bits for transmitting discrepancy from model parameters

Bits for transmitting model parameters

Note: The length here corresponds to the negative log posterior probability

Minimum Description Length (cont'd)

Possible Coding Schemes:

- code every data point in the data set
 - this assumes data points are independent and there is no structure in the data
- find a code that takes advantage of the structure in the data, and that should thus be more efficient:
 - then we need to first transmit the information about the model of the data: L(M)
 - and second for every data point how much it differs from the model: L(D|M)

Description Length

description length = L(D | M) + L(M)error complexity

- Relationship to Machine Learning:
 - the model of the data is the learned information
 - the error is the remaining approximation error of the learning system
 - we automatically seek the least complex model to account for the data:
 - bias & variance tradeoff

Model Selection Procedures (V)

Bayesian Model Selection and BIC

Bayesian Model Selection involves either choosing the model with the *largest* posterior probability or taking an *average over all models* weighted by their posterior probabilities.

Posterior probabilities

$$\Pr(M_{m} | \mathbf{D}) \propto \Pr(M_{m}) \cdot \Pr(\mathbf{D} | M_{m})$$

$$\propto \Pr(M_{m}) \cdot \int \Pr(\mathbf{D} | \theta_{M}, M_{m}) \Pr(\theta_{M} | M_{m}) d\theta_{M}$$

Bayesian Information Criterion (cont'd)

Bayesian Information Criterion

$$\Pr(M_{m} | \mathbf{D}) \propto \Pr(M_{m}) \cdot \Pr(\mathbf{D} | M_{m})$$

$$\propto \Pr(M_{m}) \cdot \int \Pr(\mathbf{D} | \theta_{M}, M_{m}) \Pr(\theta_{M} | M_{m}) d\theta_{M}$$

To compare two models:

$$\frac{\Pr(M_m \mid \mathbf{D})}{\Pr(M_l \mid \mathbf{D})} = \frac{\Pr(M_m)}{\Pr(M_l)} \cdot \frac{\Pr(\mathbf{D} \mid M_m)}{\Pr(\mathbf{D} \mid M_l)}$$

Denoted as BF(**D**) and called the *Bayes factor* : the contribution of the data towards the posterior odds.

Usually, the prior probabilities are treated as uniform in the absence of any other biases.

We can approximate $\Pr(D|M)$ using the Laplace approximation to the integral and get: $\log \Pr(\mathbf{D} | M_m) = \log \Pr(\mathbf{D} | \hat{\theta}_M, M_m) - \frac{d_m}{2} \log N$ $d_m = number of free parameters in model M_m, \hat{\theta}_M = max.likelihood estimate$

BIC: Maximize posterior = minimize BIC
$$\max \cdot \left\{ \log \Pr(\mathbf{D} \mid \hat{\theta}_M, M_m) - \frac{d_m}{2} \log N \right\} = \min \cdot \left\{ -2 \cdot \log \Pr(\mathbf{D} \mid \hat{\theta}_M, M_m) + d_m \log N \right\}$$