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Lecture V: Learning for Control
- Model Selection

Overview
• Model Complexity 
• Model Selection & Regularization Theory

• Crossvalidation & Other Techniques
• MDL, Occam’s Razor
• Bayesian Model Selection
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Concept Learning Example

Given.
Instances X : Possible days, each described by the attributes 
Sky, AirTemp, Humidity, Wind, Water, Forecast.
Target Function c in C: EnjoySport : X->{0,1}
Hypotheses H: Conjunction of literals. E.g.
Training Examples D: Positive and negative examples of target 
function.<{x1,c(x1)},…{xm, c(xm)}

Determine.
A hypothesis h in H such that h(x)=c(x) for all x in D ?
A hypothesis h in H such that h(x)=c(x) for all x in X ?

>< ??,?,,, HighCold



Lecture V: MLSC  - Dr. Sethu Vijayakumar 3

True Error of Hypothesis

Instance Space X

c h
+ +
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where c and h 
disagree

Definition: The true error (denoted errorD(h)) of hypothesis h with respect to target 
concept c and distribution D is the probability that h will misclassify an instance drawn 
at random according to D
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Two notions of error

Training error of hypothesis h with respect to target concept c

True error of hypothesis h with respect to target concept c

.)()( instancestrainingoverxcxhoftenHow ≠

.)()( instancesrandomfutureoverxcxhoftenHow ≠

Our concern
• Can we bound the true error of h given the training error of h ?
• Consider the case when the training error of h is zero, or h belongs to 

the version space of D i.e. )(DVSh ∈

{ }))()()()(,(|, xcxhDxcxHhVS DH =∈∀∈=
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Exhausting the Version Space
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Sample Complexity

What is the number of samples needed to ε-exhaust the VS ??
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PAC Learnability

Approximately Probably

PAC=Probably Approximately Correct
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PAC learnability of Boolean literals
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PAC learnability of Boolean literals: An example
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Other Measures of Model Complexity

VC Dimension [Vapnik-Chernovenkis]
Provides a general measure of complexity of a learning system.
Provides bounds on optimism (on errors expected from the system).

Assume a class of indicator function: pxandparameterswithxf ℜ∈αα )},({

Definition: The VC dimension of the class {f(x,α)} is defined to be the largest number 
of points (in some configuration) that can be shattered by members of {f(x,α)} .

Shatter: A set of points is said to be shattered by a class of functions if, no matter how 
we assign a binary label to each point, a member of the class can perfectly separate them.

Note: Hence, if VC dimension is d, then there exists a set of d points that can be 
shattered but there is no set of d+1 points that can be shattered
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VC Dimension (cont’d)

Example: Class of lines in a plane can shatter 3 points with arbitrary labeling. However, any 
configuration of 4 points that cannot be shattered with the labeling shown in panel four. 

Hence, VC dimension of a line in a plane is 3.

How is it different from number of parameters ?? Check out the next example !!!

VC dimension of a 
indicator function sin(αx) 
with one parameter is 
infinite.
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Sample Complexity and VC dim.

How many randomly drawn training examples suffice to PAC learn any 
target concept C ?

Or how many examples suffice to ε–exhaust the version space with probability (1-δ) ?

))/13(log)(8)/2(log4(1
22 εδ

ε
HVCm +≥

Using  VC dim. as a measure of complexity of H [Blumer et al., 89] :  

Recall and compare bounds using |H| (size of hypothesis space):

))/1ln((ln1 δ
ε

+≥ Hm

Comparisons:
• VC(H) bounds are defined even for infinite hypothesis spaces
• Usually, the bounds using VC(H) are tighter than those using |H|
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VC Dimension (cont’d)

VC dimension of real valued functions {g(x,α)} : is the VC dimension of the indicator 
class {I(g(x,α)-β>0)} , where β takes the values over the range of g.

Estimation of Bounds on Prediction Error based on VC dimension (h)
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For a machine with VC dim=h, the following bound holds with probability1-η

: Error Bounds
N

h
Nh

LL emp
4

log)12(log
)()(

η

αα
−+

+≤



Lecture V: MLSC  - Dr. Sethu Vijayakumar 14

Model Selection/Assessment

Model Selection
Estimating the performance of different models in order to choose the 
(approximate) best one.

Model Assessment
Having chosen a final model, estimating it’s prediction (generalization) 
error

If we are in a data rich environment, then divide the data set into :

Train TestValidation

Otherwise, 
• we recycle the validation set as the test set (efficient sample reuse) - at the 
expense of underestimating the true test error of the chosen model.
• Use analytical methods to approximate the validation step
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Model Selection Procedures

Crossvalidation
Bootstrap

Regularization
Structural Risk Minimization
Minimum Description Length
Bayesian Model Selection / BIC

(Efficient sample reuse methods)
Makes no prior assumption about the models

(Analytical + some sample reuse)
Incorporates prior knowledge about 
the models under consideration and 
aims for simpler models
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Model Selection Procedures (I)

Crossvalidation
Divide a given data set into two parts – a training set and testing (validation) test. 
Train models of various complexity and test their generalization on the validation set. 

+ n-fold crossvalidation and leave-one-out crossvalidation

Training set error keeps decreasing 
as the model complexity increases.
Testing/Validation set error 
(typically) decreases initially and 
then, starts to increase again.

The “elbow” corresponds to the optimal complexity

A typical performance curve of the [errors vs. model complexity] looks like this: 
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Example: Leave-one-out Crossvalidation

Notation for leave-one-out CV error: ( )∑
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=> optimal degree of polynomial is 4 or 5

Note that this can be computationally 
very expensive for some network, 
and very cheap for others.
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Model Selection Procedures (II)

Regularization
In this approach, we write an augmented error function :

E = error on data +  λ • model complexity

The second term penalizes the complex models with large variance. λ is the parameter 
specifying the weight of the penalty. Too large λ results in strong bias. λ is optimized 
(usually) using crossvalidation.

For instance: add penalty term to MSE cost function, e.g., a smoothness prior

˜ J = J + γP

P = d 2 y
dx 2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

2

dx∫

We will see more instances and examples of various types of regularization at 
appropriate junctures along the course…
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Model Selection Procedures (III)

Structural Risk Minimization (SRM) [Vapnik]
• Assumes we have a set of models ordered in terms of their complexity.

• Polynomials of increasing degree (complexity = number of free parameters)

• Models ordered according to VC dimension (h1< h2 <…)

• SRM corresponds to finding the model that is simplest in the order of complexity while 
while performing the best in terms of empirical (training) error. 

A very successful application of the SRM principle is the Support Vector Machines (SVM) – a 
paradigm based on the principle of maximizing margins & in turn reducing the VC dimension
of approximation candidates.
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Model Selection Procedures (IV)

Minimum Description Length (MDL) [Rissanen,1978]
• Motivated from the field of Information theory – Coding length. 

• Out of all the models that describe the data well, we want to have the simplest models
since that lends to the shortest description length (coding) for representation.

To transmit a random variable z having probability density 
function Pr(z), we require about –log Pr(z) bits of information

Shannon’s Theorem

Applied to Model Selection: model M, parameter θ, data D=(X,y)

)Pr(log)Prlog MM(length |θX,θ,|y −−=

Bits for transmitting model parameters

Bits for transmitting discrepancy 
from model parameters Note: The length here corresponds to 

the negative log posterior probability
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Minimum Description Length (cont’d)

Possible Coding Schemes:
code every data point in the data set

this assumes data points are independent and there is no structure in the data
find a code that takes advantage of the structure in the data, and that should 
thus be more efficient:

then we need to first transmit the information about the model of the data: L(M)
and second for every data point how much it differs from the model: L(D|M)

Description Length

Relationship to Machine Learning:
the model of the data is the learned information
the error is the remaining approximation error of the learning system
we automatically seek the least complex model to account for the data:

bias & variance tradeoff

( ) ( )description length = |L D M L M+
error complexity
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Model Selection Procedures (V)

Bayesian Model Selection and BIC

)data(
)model()model|data()data|model(

p
ppp =

Likelihood: 
Evidence from data

Prior knowledge about 
models

• For a given model, we can evaluate 
the likelihood of observing the data 

• Here, we incorporate the our prior 
knowledge about the likelihood of the 
models

Bayesian Model Selection involves either choosing the model with the largest posterior 
probability or taking an average over all models weighted by their posterior probabilities.

Posterior probabilities
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Bayesian Information Criterion (cont’d)

Bayesian Information Criterion

MmMmMm
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To compare two models: 
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⋅= Denoted as BF(D) and called the 
Bayes factor :  the contribution of 
the data towards the posterior odds.

Usually, the prior probabilities are treated as uniform in the absence of any other biases.

We can approximate Pr(D|M) using the Laplace approximation to the integral and get: 
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