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Lecture IV: Learning for Control
- Inference with Data

Overview
• Internal models and function approximation
• Cost Function & Optimization
• Generalization, Overfitting & Bias-Variance Dilemma
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Function Approximation for control

Supervised Learning
Adaptive Control

Dynamic Programming
Reinforcement Learning

sensory feedback

Learning Internal Models or 
Control Policies is essentially 

performing function 
approximation
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Types of internal models

Learn these models from 
data or observations of 
input-output pairs …

[Figure reproduced from Wolpert & Ghahramani, Nature Neuroscience(2000)]
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Learning as a function approx. problem
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Data and Inference

Training Data : N
iii t 1},{},{ === xtXD

The outputs ti (targets) can be :

true/false (Concept Learning), 

class labels (Classification) or 

real numbers (Regression). 

Data Generating Process :

Observed data contaminated by noise:

Modeling the data: 
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Machine Learning Design Issues

1. Choosing the Training Data (Active learning)
- Decide on type of data (reward, class or real values)

- Sampling

To get a representative distribution

To select informative data

2. Model Selection or Target Representation

3. Measure of Distance (Error/Loss function)-> d(.)

4. Optimization Procedure
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Cost/Loss Functions(I)

For Classification

Misclassification : 
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Exponential : 
Binomial Deviance: 
Squared Error : 
Support Vector :
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Exponential error loss concentrates much more on points 
with large negative margins while Binomial deviance
spreads the influence over all data. Hence, Binomial 
deviance is more robust in noise prone situations.
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Cost/Loss Functions(II)

For Regression
Squared Error Loss : 
Absolute Error Loss : 
Huber Loss : 
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Huber Loss combines the 
good properties of squared 
error loss near zero and 
absolute error loss when 
the error is large.
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Empirical Error vs. Generalization Error

Generalization
The ability of a learning system to not only memorize training data but also to predict 
reasonably well for novel inputs based on the training examples.
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Usually, we only have access to the 
empirical (training) error since we do not 
know the true generating function.

However, performing optimization only 
based on empirical error does not ensure 
good generalization… we will see an 
example of overfitting soon !!
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Overfitting

Overfitting
The tendency of the learning system (typically with too many open parameters) to 
concentrate on the idiosyncrasies of the training data and noise rather than capturing 
the essential features of the data generating mechanism.

Example from regression: Polynomial fitting
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How many inputs (i.e., degree of 
polynomial) should be used to fit the data?
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Overfitting (cont’d)

A popular error criterion is the Mean Squared Error Criterion

or the Normalized Mean-Squared Error
the normalized MSE is a measure of how much variance in the output 
data was explained

( )∑
=

−=
N

i
ii yy

N
J

1

2ˆ1

( )∑
=

−=
N

i
ii

y

yy
N

J
1

2
2 ˆ1

σ

Example target function :

y = x + 2exp(−16x2 )
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Overfitting with Polynomials
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Observation: Just concentrating on reducing training error results in worse 
generalization with novel data…due to overfitting. 
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Bias-Variance Dilemma

Too few features are bad, too many are bad, thus, there should be an 
optimum
A closer look at the MSE criterion

What we actually want to minimize is the generalization/true error …but 
we do not have the original function and hence, all we have access to is 
the training /empirical error !! 

The next best thing to do: minimize J in expectation, i.e., over 
infinitely many data sets ->
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Bias-Variance Dilemma (II)
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Bias –Variance Decomposition of Expected Error

Note: For derivation of the decomposition, refer to class handout. Adobe Acrobat 
Document

Usually, if we try to reduce bias in a model, it increases the variance and vice-
versa, resulting in the dilemma for optimal choice.
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