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Lecture III: Statistics & probability theory

Overview
• random variables (discrete & continuous) 
• distributions (discrete & continuous)
• expected values, moments
• joint distributions, conditional distributions, independence
• Bayes Rule

Note: Probability theory and distributions form the basis for explanation of data and 
their generative mechanisms.
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Random Variables

A random variable is a random number determined by chance, or more 
formally, drawn according to a probability distribution

the probability distribution can be given by the physics of an experiment  (e.g., 
throwing dice)
the probability distribution can be synthetic
discrete & continuous random variables

Typical random variables in Machine Learning Problems
the input data
the output data
noise

Important concept in learning: The data generating model
e.g., what is the data generating model for: i) throwing dice, ii) regression, iii) 
classification, iv) for visual perception?
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Discrete Probability Distributions

The random variables only take on discrete values
e.g., throwing dice: possible values 

The probabilities sum to 1

Discrete distributions are particularly important in classification
Probability Mass Function or Frequency Function (normalized histogram)
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Classic Discrete Distributions (I)

Bernoulli Distribution

A Bernoulli random variable takes on only two values, i.e., 0 and 1.
P(0)=p and  P(1)=1-p, or in compact notation:

Bernoulli distributions are naturally modeled by sigmoidal activation functions in 
neural networks (Bishop, Ch.1 & Ch.3) with binary inputs.
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Classic Discrete Distributions (II)

Binomial Distribution

Like Bernoulli distribution: binary input variables: 0 or 1, and probability P(0)=p
and  P(1)=1-p
What is the probability of k successes, P(k), in a series of n independent trials? 
(n>=k)
P(k) is a binomial random variable:

Binomial variables are important for density estimation networks, e.g. “what is the 
probability that k data points fall into region R?” (Bishop, Ch.2)
Bernoulli distribution is a subset of binomial distribution (i.e., n=1)
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Classic Discrete Distributions (III)

Multinomial Distribution
A generalization of the binomial distribution to multiple outputs (i.e., multiple 
classes can be categorized instead of just one class).
n independent trials can result in one of r types of outcomes, where each outcome 
cr has a probability P(cr)=pr ( pr =1).
What is the probability P(n1,n2,...,nr), i.e., the probability that in n trials, the 
frequency of the r classes is (n1,n2,...,nr)? This is a multinomial random variable:

The multinomial distribution plays an important role in multi-class classification 
(where n=1).
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Classic Discrete Distributions (IV)

Poisson Distribution

The Poisson distribution is binomial distribution where the number of trials n goes 
to infinity, and the probability of success on each trial, p, goes to zero, such that 
np=λ.

Poisson distributions are an important model for the firing characteristics of 
biological neurons. They are also used as an approximation to binomial variables 
with small p.

P ( k ) =
λ k

k !
e − λ
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Poisson Distribution (cont’d)

Example: What is the Poisson distribution of neuronal firing of a cerebellar 
Purkinje cell in a 10ms interval? 

we know that the average firing rate of a pyramidal cell is 40Hz
λ=40Hz*0.01s=0.4
note that approximation only works if probability of spiking is small in the considered interval
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Continuous Probability Distributions

Random variables take on real values.
Continuous distributions are discrete distributions where the number of 
discrete values goes to infinity while the probability of each discrete value 
goes to zero.
Probabilities become densities.
Probability density integrates to 1.

Continuous distributions are particularly important in regression.

p(x)dx = 1
−∞

+∞

∫
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Continuous Probability Distributions (cont’d)

Probability Density Function p(x)

Probability of an event:
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Classic Cont. Distributions (I)

The most important continuous distribution

Also called Gaussian distribution after C.F.Gauss who proposed it
Justified by the Central Limit Theorem:

roughly: “if a random variable is the sum of a large number of independent random variables, 
it is approximately normally distributed”
Many observed variables are the sum of several random variables

Shorthand:
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Classic Cont. Distribution (II)

The Exponential Family
A large class of distributions that are all analytically appealing. Why? Because 
taking the log() of them decomposes them into simple terms.

All members are unimodal.
However, there a many “daily”-life distributions that are not captured by the 
exponential family.
Example distribution in the family: Univariate Gaussian, Exponential 
distribution, Rayleigh distribution, Maxwell distribution, Gamma distribution, 
Beta distribution, Poisson distribution, Binomial distribution, Multinomial 
distribution.

p( x ) = exp
xθ − b θ( )

a φ( )
+ c x , φ( )

⎛ 

⎝ 
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⎟ for some specific functions a(), b(), and c(),

and parameter vectors θ and φ.
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Classic Cont. Distributions (III)

Uniform Distribution
All data is equally probable within a bounded region R, p(x)=1/R.
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Uniform distributions play a very important role in machine learning based on 
information theory and entropy methods.



Lecture III: MLSC  - Dr. Sethu Vijayakumar 14

Expected Values

Definition for discrete random variables:

Definition for continuous random variables:

E{x} is often called the MEAN of x.
E{x} is the “Center of Mass” of the distribution.

Example I: What is the mean of a normal distribution?

E x{ } = x i P x i( )
i

∑ = x

E x{ } = x i
−∞
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∫ p x i( )dx = x
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Expected Values (cont’d)

Example II: What is the mean of the distribution below?

Note: The Expectation of a variable is often assumed to be the most probable value
of the variable -- but this may go wrong!
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Sample Expectation

Given a FINITE sample of data, what is the Expectation?

E x{ } =
1
N

x i
i = 1

N

∑
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Expectation of Function of Random Variables

E g x( ){ } = ?
as long as sum (or integral) remain bounded, just replace x*p(x) with 
g(x)*p(x) in E{}

Note: in general, 
Other rules:

E g x( ){ } ≠ g E x{ }( )
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Variance and Standard Deviation

Variance
Standard Deviation

the Var gives a measure of dispersion of the data

Example I: What is the variance of a normal distribution?

Example II: What is the variance of a uniform distribution x ∈ [0, r] ?

A most important rule (but numerically dangerous):

Var x{ } =
r 2

12
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Sample Variance and Covariance

Sample Variance.

Why division by (N-1)? This is to obtain an unbiased estimate of the variance.

Covariance.

Sample Covariance.

{ } { }( ) { }( ){ }yEyxExEyxCov −−=,

Cov x , y{ } =
1

N − 1
x i − E x{ }( ) yi − E y{ }( )
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∑
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Moments of a Random Variable

Moments

Central Moments

Useful moments:
m1    =Mean
cm2=Variance
cm3=Skewness (measure of asymmetry of a distribution)
cm4=Kurtosis (detects heavy and light tails and deformations of a distribution; 
important in computer vision)

{ }n
n xEm =

cm n = E x − µ( )n{ }
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Joint Distributions

Joint distributions are distributions of several random variables, stating the 
probability that event_1 AND event_2 occur simultaneously.

Example 1: Generic 2 dimensional joint distribution.

Example 2: Multivariate normal distribution in vector notation.

Marginal Distributions: Integrate out some variables (this can be 
computationally very expensive).

p x , y( )
−∞

∞
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Probabilistic Independence

By definition, independent distributions satisfy:

Knowledge about independence is VERY powerful since it simplifies the 
evaluation of equations a lot.

Example 1: Marginal distribution of independent variables.

Example 2: The multivariate normal distribution for independent variables.

p x , y( ) = p( x ) p( y)
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Conditional Distributions

Definition:

Since conditional distributions are more “intuitive”, some people believe that joint 
distributions should be defined through the more atomic conditions distribution

What does independence mean for conditional distributions?

The Chain Rule of Probabilities

P y | x( ) =
P x , y( )
P x( )

P x , y( ) = P y | x( )P x( )

P y | x( ) = P y( )

P x 1, x 2 ,… , xn( ) = P x 1 | x 2 ,… , xn( )P x 2 | x 3 ,… , xn( )
… P x n− 1 | xn( )P xn( )
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Bayes Rule

Definition:

Because:

Interpretation:
P(y) is the PRIOR knowledge about y.
x is new evidence to be incorporated to update my belief about y.
P(x|y) is the LIKELIHOOD of x given that y was observed.
Both prior and likelihood can often be generated beforehand, e.g., by histogram 
statistics.
P(x) is a normalizing factor, corresponding to the marginal distribution of x. Often it 
need not be evaluated explicitly. But it can become a great computational burden. 
“P(x) is an enumeration of all possible combinations in which x and y can occur”.
P(y|x) is the POSTERIOR probability of y, i.e., the belief in y after one discovered x.

P y | x( ) =
P ( x | y)P ( y)

P ( x)

P y | x( )P( x) = P ( x , y) = P ( x | y)P ( y)
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