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Lecture XIV
Trajectory Formation through Optimization

Contents:
• Optimization Criterion

• Minimum Distance
• Minimum Time
• Minimum Acceleration Change
• Minimum Torque Change
• Minimum End Point Variance

• Using Motor Redundancies Efficiently
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Trajectory Planning Phases

Trajectory generation 
Involves computation of the best trajectory for the object

Force Distribution 
Involves determining the force distribution between different actuators 
(a.k.a. resolving actuator redundancy)

Some of the approaches solve the trajectory generation and force distribution 
problems separately in two phases. 

It has been argued that solving the two issues simultaneously (as a global 
optimization problem)  is superior in many cases. 

Kinematics: refers to geometrical and time-based properties of motion; the 
variables of interest are positions (e.g. joint angles or hand Cartesian 
coordinates) and their corresponding velocities, accelerations and higher 
derivatives.

Dynamics: refers to the forces required to produce motion and is therefore 
intimately linked to the properties of the object such as it’s mass, inertia and 
stiffness.
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Some Simple Cost Functions

t

x
Shortest Distance

Refer: F.C.Park and R.W.Brockett, Kinematic 
Dexterity of robot mechanisms, Int. Journal of 
Robotic Research, 1391), pp. 1-15, 1994

Minimum Acceleration
Refer: L. Noakes, G. Heinzinger, and B. paden, Cubic 
splines on curved surfaces, IMA Journal of 
Mathematical Control & Information, 6, pp. 465-473, 
1989.

Minimum Time (Bang-Bang Control) 
Refer: Z. Shiller, Time Energy optimal control of 
articulated systems with geometric path constraints, 
In. Proc. of 1994 Intl. Conference on Robotics and 
Automation, pp. 2680-2685, San Diego, CA, 1994.
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Minimum Jerk Trajectory Planning

Proposed by Flash & Hogan (1985)
Optimization Criterion minimizes the jerk in the trajectory

The minimum-jerk solution can be written as:

Depends only on the kinematics of the task and is independent of the 
physical structure or dynamics of the plant
Predicts bell shaped velocity profiles
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Minimum Torque Change Planning

Proposed by Uno, Kawato & Suzuki (1989)
Optimization Criterion minimizes the change of torque

The Min. Jerk and Min. Torque change cost functions are closely 
related since acceleration is proportional to torque at zero speed. 
No Analytical solution possible for Min. Torque change criterion but 
iterative solution is possible.

Like Min. Jerk, predicts bell shaped velocity profiles.
But also predicts that the form of the trajectory should vary across the 
arm’s workspace. 
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Min. Jerk vs Min. Torque Change

One way of resolving how humans plan their movement is by setting up a 
experiment which can distinguish between the kinematic vs dynamic plans
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Min. Jerk vs Min. Torque Change (II)

Most studies suggest that 
trajectories are planned in 
visually-based kinematic 

coordinates

No perturbations 
at the start & 

end.
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Minimum Endpoint Variance Planning

Proposed by Harris & Wolpert (1998)
Also called TOPS (Trajectory Optimization in the Presence of Signal 
dependent noise)
Basic Theory: 

Single physiological assumption that 
neural signals are corrupted by noise 
whose variance increases with the size of 
the control signal. 
In the presence of such noise, the shape of 
the trajectory is selected to minimize the 
variance of the final end-point position. 
Biologically more plausible since we do 
have access to end point errors as opposed 
to complex optimization processes (min. 
jerk and min. torque change integrated 
over the entire movement) that other 
optimization criterion suggest the brain has 
to solve.

Refer: Harris & Wolpert, Signal-dependent noise determines motor planning, Nature, 
vol. 394, 780-784
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Testing the Internal Model Learning Hypothesis
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Learning of Internal Models

Using the force manipulandum, one can 
create an interesting experiment in which 
you modify the dynamics of your arm 
movement in only the x-y plane. 
Humans are very adept at learning these 
changed dynamic fields and adapt at a 
relatively short time scale.
When we remove these effects, after 
effects of learning can be felt for some 
time before re-adaptation, providing 
evidence that we learn internal models 
and use them in a predictive feedforward
fashion
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Multiple Model Hypothesis
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Recursive Bayes Estimation
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Multiple model hypothesis (II)

Multiple Paired Forward-Inverse Models (MPFIM)
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Resolving Motor Redundancies
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Resolving kinematics with RMRC

Resolved Motion Rate Control with locality in joint positions 

Integrate over small increments (where linearity 
holds) to get complete trajectoryθθ)(x ∆=∆ J

 θx && J=Based on collected training data forward 
kinematics in velocity space was almost 
completely linear, irrespective of joint position

Hence,  in this case, we can use pseudo-inversion 
with the constant Jacobian !!
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Pseudoinverse & Null Space manipulation

?θ  , θx &&& what isGiven J=

nullkJJJ ) -(Ixθ ## += &&

icurrent

opt
inull

L
k

,
, θ∂

∂
−=

2
,, )(

2
1min idefaulticurrentiopt wL θθ −= ∑ Optimization criterion

1# )( −= TT JJJJ : Pseudoinverse

Optimization based 
on gradient descent 
in Null space

)( ,, idefaulticurrentiw θθ −=
Inertial 
Weighting for 
each joint


	Lecture XIVTrajectory Formation through Optimization
	Trajectory Planning Phases
	Some Simple Cost Functions
	Minimum Jerk Trajectory Planning
	Minimum Torque Change Planning
	Min. Jerk vs Min. Torque Change
	Min. Jerk vs Min. Torque Change (II)
	Minimum Endpoint Variance Planning
	Testing the Internal Model Learning Hypothesis
	Learning of Internal Models
	Multiple Model Hypothesis
	Recursive Bayes Estimation
	Multiple model hypothesis (II)
	Resolving Motor Redundancies
	Resolving kinematics with RMRC
	Pseudoinverse & Null Space manipulation

