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Traditional studies of motor learning and prediction have focused

on how subjects perform a single task. Recent advances have

been made in our understanding of motor learning and prediction

by investigating the way we learn variable tasks, which change

either predictably or unpredictably over time. Similarly, studies

have examined how variability in our own movements affects

motor learning.
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Introduction
In everyday life we are required to move about in a

changing and often unpredictable environment. Despite

these variations we remain able to achieve our behavioural

goals with apparent ease. Motor control researchers have

recently shown increasing interest in understanding how

we learn to control our movements and predict the con-

sequences of our actions in predictably and unpredictably

varying environments. Computer controlled virtual envir-

onments, usually including a robotic manipulandum for

force feedback, are often employed in this research as

they allow experimenters to precisely control the para-

meters of their subject’s mechanical and visual environ-

ment. When subjects are exposed to a new mechanical

environment their movements are initially perturbed, but

return to approximately their normal pattern after several

hundred movements. Here, we review recent studies

looking at motor learning and prediction.

Motor learning in an uncertain
environment
Several studies have examined how we learn tasks whose

parameters vary randomly over time. Takahashi et al. [1]

asked subjects to make elbow flexion and extension

movements against a viscous load, the strength of which

was drawn randomly from a Gaussian distribution in each

trial. In this randomly varying environment, subjects

learned the average of the loads they experienced.

Scheidt et al. [2�] confirmed that this was also true for

planar reaching movements in which a velocity-depen-

dent force field, of varying amplitude, was applied at the

hand by a robotic manipulandum (by force field we mean

a force that is related to the state of the hand). On the

basis of a time-series analysis of performance, they

showed that the subject’s estimate of the expected force

was based on the weighted average of performance over

the previous few trials. Moreover, they examined trials in

which the amplitude of the force field was drawn from a

bimodal distribution, such that high and low forces were

frequently experienced but moderate amplitudes (the

mean) were experienced infrequently. In this situation,

subjects tend to learn the mean rather than the most

frequently experienced amplitude (the mode). In a

related experiment, Witney et al. [3] examined the devel-

opment of anticipatory responses. When one hand pulls

on an object held in the other, the restraining hand

generates an anticipatory increase in grip force, and

thereby prevents the object from slipping. In the experi-

ment performed by Witney et al., subjects held an object,

whose properties were under computer control, between

their hands. When the properties of the object were

randomly changed between trials, the anticipatory mod-

ulation of grip force depended on the weighted average of

the object’s properties, as experienced over the previous

three trials, with the weighting increasing for the most

recent trials. These results suggest that in a randomly

varying environment, a short-term averaging process

underlies the representation of the task in motor working

memory, and that learning may not represent the statistics

of how the perturbation changes over a longer time scale.

Predictably varying environments

Adaptation to predictably varying environments has also

been investigated. Karniel and Mussa-Ivaldi [4�] taught

subjects, on separate days, to move in two different

velocity-dependent force fields applied at the hand by

a robotic manipulandum. Even after this experience,

subjects were unable to move accurately when the same

two fields alternated after each movement. This suggests

that, although subjects can learn and maintain accuracy in

both force fields [5], rapid switching in motor working

memory is not possible. Wigmore et al. [6�] have found

support for this in visuomotor learning of rotated visual

feedback. They found that multiple visuomotor rotations

seem to compete for the same working memory resources.

These studies suggest that computational mechanisms

which average across recent trials are used to learn both
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predictable and randomly varying tasks, which explains

why we cannot represent rapidly alternating environments.

Control strategies

There are two distinct strategies people might employ

when learning novel dynamic tasks, such as moving while

an external force acts on their hand. First, by learning the

forces required to compensate for an externally imposed

perturbation they might directly counteract the perturb-

ing influence. Alternatively, by co-contracting muscles,

they increase the stiffness of their arm and thereby reduce

the displacement caused by an external force. When

reaching in a predictable force field people tend to

employ a low-stiffness strategy and learn to represent

the compensatory forces [7,8]. Early in the process of

learning the stiffness of the arm reduces systematically as

these compensatory responses are learned [9�,10]. When

manipulating an external object with internal degrees of

freedom, such as a heavy mass attached to a spring, people

also employ low-stiffness control [11]. In several situa-

tions, however, it is not possible to reliably predict the

forces the hand will experience, and therefore compensa-

tion is difficult. For example, when drilling into a wall

with a power drill, the aim is to maintain the drill bit

perpendicular to the wall while applying an orthogonal

force [12]. This situation is inherently unstable, in that

any deviations from orthogonality lead to forces that

destabilise the posture. In this situation the stiffness of

the hand can be increased in all directions, thereby

stabilising the system. Burdet et al. [13��] have used an

analogous task in which the instability was present in only

one direction (Figure 1). Subjects in this study had to

reach from a starting point along a straight line towards a

target. Any deviation of the hand during the movement

was exacerbated by a force acting perpendicular to the

line. They showed that subjects tailored the stiffness of

the hand to match the requirements of the task, stiffening

the hand only in the perpendicular direction. This is the

first demonstration that stiffness can be controlled inde-

pendently in different directions. Hence, it seems that we

employ both high- and low-stiffness control strategies,

with the high-stiffness control reducing the effect of

any perturbations that a short-term averaging process

cannot represent.

Several studies have investigated how learning a dynamic

task (e.g. movement in a force field) affects a previously

learned visuomotor task (e.g. a visual rotation). In some

Figure 1
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The CNS is able to increase the stiffness of the arm by co-contracting muscles during a movement. This strategy reduces the susceptibility of the arm

to external force perturbations. A high-stiffness strategy reduces the need for complex neural representations of sensorimotor transformations,

but at a cost of requiring the muscles to work harder. (a) In an experiment by Burdet et al. [13��], subjects were required to make reaching movements
in a divergent field produced by a robotic manipulandum. The field is unstable as any deviation from a straight path will generate a force that acts in

the same direction. (b) Initially, this caused the subject’s hand paths to diverge from the target, but with practice, subjects learned to make straight

movements. (c) The improvement was achieved by increasing the stiffness of the arm, but only in the direction of maximum instability. The stiffness

ellipse represents restoring force to a step displacement of the hand in different directions. After learning, the stiffness ellipse is stretched in

direction of the unstable force, indicating that performance was improved by increasing the stiffness of the arm, but only in the direction of

maximum instability.
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circumstances, we are able to learn an acceleration-

dependent force-field without affecting a previously

learned visuomotor rotation [14]. However, learning a

position-dependent force field substantially interferes

with a previously learned visuomotor rotation [15�].
The features that determine the extent to which a visuo-

motor and a dynamic task interfere are still not known.

Motor prediction
The ability to predict the future state of the motor system

is thought to be essential for skilled movement because of

the delays inherent in the sensorimotor system. Recent

evidence has suggested that we predict the consequences

of our motor commands and the behaviour of external

objects to generate current estimates of the state of our

body and the environment.

It has recently been shown that we are able to predict

subtle variations in the dynamic state of our arms. Ariff

et al. [16] hid subjects’ arms from view and asked them to

make reaching movements without visual feedback.

They were asked to track the position of their unseen

hand with their eyes. Subjects made saccadic move-

ments to a location that predicted the position of their

hand 196 ms in the future. A brief force pulse was then

applied to the hand, thereby altering the state of the arm.

After the pulse, saccades were suppressed for 100 ms,

and then accurate predictive saccades re-emerged. This

inhibition period may reflect the time taken to recom-

pute an estimate of hand position. After the dynamics of

the arm were altered by applying a novel velocity depen-

dent force field, however, the subject’s subsequent sac-

cades were inaccurate. This suggests that subjects rely

on an internal estimate of arm dynamics to generate

their predictions.

The forces people apply with their fingers as they manip-

ulate objects also show subtle variations consistent with

access to internal predictions. Because of the configura-

tion of the arm, the effective inertia at the hand varies

with the direction of movement (inertial anisotropy). This

variation in inertia is reflected in the fact that the initial

acceleration of the hand is slower for high inertia direc-

tions (Figure 2). Flanagan et al. [17��] have shown that

when sliding an object across a frictionless surface in

different directions subjects vary the force they apply

Figure 2
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People are able to precisely predict the effects of directional variations in the inertia of their arm. (a) The peak acceleration of the hand (green arrows)
in response to a force pulse varies with direction due to the inertial anisotropy of the arm. In an experiment by Flanagan et al. [17��], subjects pointed

to targets that were arranged radially around the starting point. Pointing movements were made from two different initial arm positions. (b) An air-sled

containing a force transducer was used to record the forces generated at the finger. (c) The normal (downward) force generated was precisely

coordinated in anticipation of the tangential forces generated during the arm movement, regardless of starting posture. This was reflected in a

strong positive correlation between the peak tangential force and the normal force generated at the same instant. Hence, the accelerative effects of

differing effective inertia in each direction were accurately predicted by the motor system.
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normal to the surface in anticipation of the direction-

dependent change in initial hand acceleration. This indi-

cates the presence of a predictive model that allows for

the effects of anisotropic inertia. McIntyre et al. [18] have

shown that predictive models are tuned for the effects of

gravity. When catching a vertically falling ball, people

normally generate accurately timed anticipatory responses

to intercept the ball. During space travel, however, these

anticipatory responses occur too early, indicating that the

CNS employs an internal model of acceleration due to

gravity, which is inappropriate in a zero gravity environ-

ment. As subjects spend more time in a zero gravity

environment the anticipatory response slowly improves,

but never reaches the performance that is achieved in

terrestrial gravity.

Modelling the performance of subjects who were asked to

balance a pole on their fingertip has also provided evi-

dence for predictive models. Upon examining a variety of

control schemes, Mehta and Schaal [19] concluded,

through a process of elimination, that it was likely that

a forward predictive model was employed. Such forward

predictive models are thought to use a copy of the motor

command to predict the consequences of an action. Good

theoretical arguments have been put forward in favour of

such a scheme of prediction, although neurophysiological

evidence for such a process has emerged only recently.

Sommer and Wurtz [20��] have suggested that medio-

dorsal (MD) thalamic neurons carry a corollary discharge

signal, from the superior colliculus to the frontal eye fields

(FEF), that is used to update the estimate of eye position

during saccades. The MD neurons fire before saccade

onset, demonstrating that their activity is linked to the

motor command and not the sensory feedback. When

these neurons are inactivated by a local application of

muscimol, the precision and velocity of a saccade to a

single target is unaffected. However, in accordance with a

failure to fully use the predictive mechanism, the accu-

racy of the second saccade of a double-step task shows

biases that would be expected if the state of the eye were

not fully updated.

Motor learning and consolidation
Several studies have examined memory consolidation

after learning motor tasks. Memory consolidation is the

process by which memory representations become

increasingly robust with the passage of time. In the hours

after learning a dynamic motor task, such as movement in

a force field, progressive memory consolidation takes

place [21,22]. Unlike the consolidation of perceptual

skills and sequence learning [23�,24–26], this process

does not require a period of sleep [27]. It was recently

revealed that motor consolidation of a very simple speed

task can be interrupted by performing repetitive tran-

scranial magnetic stimulation over the primary motor

cortex [28,29]. Consolidation of a dynamic learning task

is well established, whereas it has recently been observed

that the process of consolidation does not occur after

learning a visuomotor transformation or a movement

sequence [30], but this could be because of their differing

anatomical loci [31].

It is generally believed that subjects can learn tasks better

with their dominant hand than with their non-dominant

hand. Sainburg [32] has recently shown that the dominant

hand has a clear advantage in learning novel inertial

dynamic forces but that no advantage is observed when

learning to compensate for a visuomotor rotation. This

observation led to the ‘dynamic dominance hypothesis’ of

handedness, which proposes that differences in dominant

and non-dominant limb performance arise from a differ-

ential ability to control limb dynamics. Despite clear

differences in the ability to learn dynamics, there is

evidence of generalisation of learned dynamics between

hands, at least from the dominant to the non-dominant

hand [33].

Optimal control
Most movement tasks can be achieved using many dif-

ferent joint configurations, levels of co-contraction and so

on. Several studies have sought to understand why certain

motor patterns are preferred to others (stereotypy). These

studies place motor learning within an optimal control

framework, in which a task is associated with a cost, for

example, the energy consumed or the time taken to

complete the task. Planning or learning can be considered

to be part of producing the movement that best minimises

the cost. For example, for arm movements, costs that

penalise the lack of smoothness, by penalising either the

rate of change of acceleration of the hand (jerk) [34] or the

rate of change of torque at the joints, have been successful

for modelling human movements. Recently, costs that

take into account the variability of the motor command

have been developed. Force production shows signal-

dependent noise, which is variability in force with a

constant coefficient of variation. Harris and Wolpert

[35] and Kitazawa [36] suggested that controlling the

statistics of movement in the presence of a signal that

depends on the motor command is a major determinant of

motor planning. Recently, Todorov and Jordan [37��]
have shown that optimal feedback control in the presence

of signal-dependent noise may form a general strategy for

movement production. This model suggests that rather

than forming a desired trajectory, the motor system may

use optimal feedback control to deal with deviations that

interfere with the task goal.

Conclusions
We have reviewed recent advances in understanding

motor learning and prediction. Progress has been made

in understanding the effects on movement of a mechan-

ical environment that varies both predictably and unpre-

dictably. Our ability to predict the consequences of our

own motor commands and the behaviour of external
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objects is also being revealed in increasing detail.

Although we have some partial answers the coming years

should elucidate which motor tasks lead to competition in

motor working memory, and whether there are multiple

motor working memory systems. This work should also

identify the common and distinct elements between

motor learning and other forms of learning (e.g. percep-

tual). Finally, a unifying perspective should emerge

which can tie together planning, prediction, control and

learning into one framework.
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