Lecture XI1I
Dynamical Systems as Movement Policies

Contents:
. Differential Equation
. Force Fields, Velocity Fields

. Dynamical systems for Trajectory Plans
- Generating plans dynamically
- Fitting (or modifying) plans
- Imitation based learning

Thanks to my collaborator Auke ljspeert (EPFL) for many of the contents on the slides for this lecture.



Movement policies as Dynamical Systems
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Discreet & Rhythmic Movement Primitives

Represent complex
movements in globally stable
attractor landscapes of
nonlinear autonomous
differential equations

Choose kinematic
representation for easy re-
use in different workspace
location

Ensure easy temporal and
spatial scaling (topological
equivalence)

Use local learning to modify
the attractors according to
demonstration of teacher
and self-learning



Discreet & Rhythmic Movement superposition

Open loop with oscillators Closed loop control in horizontal plane

Open (vertical) +
Closed (horizontal)
loop control
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What is a Differential Equation?

o Differential equation: an equation that describes how state
variables evolve over time, for instance:

y=a(c-y)




Some Definitions

Ordinary differential equation: differential equation that
Involves only ordinary derivatives (as opposed to partial derivatives)

Autonomous equation: differential equation that does not
(explicitely) depend on time

Linear differential equation: differential equation in which the
state variables only appear in linear combinations
Nonlinear differential equation: differential equation in which

some state variables appear in nonlinear combinations (e.g. products,
cosine,...)

Fixed point: point at which all derivatives are zero (can be an
attractor, a repeller, or a saddle point, cf later)

Limit cycle: periodic isolated closed trajectory (can only occur in
nonlinear systems)



Interesting Regimes of Differential Equations

From Strogatz 1994
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First Order Linear Systems

First order linear system: y = Ol(C — y)

How to solve this equation, for a given y(t=0), ¢, and « ?
Two methods: analytical solution or numerical integration
Analytical solution: y(t) = (y0 — C) exp(—at) +C

Numerical integration: Euler method, Runge-Kutta,...



First Order Linear Systems




Second Order Linear Systems

y=a(Bc-x)-y)
X=y




Second Order Linear Systems

y=a(Bc-x)-Y)
X=y




Second Order Non-linear System

y =—2C0SX—COSY
X =—2C0S Yy —COS X
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Learning a movement by demonstration

Joint anglesg‘ l

Movement Trajectory Movement
recognition formation execution
system (Inv. Dyn.)
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Task of the trajectory formation system:
e Toencode demonstrated trajectories with high accuracy,
 To be able to modulate the learned trajectory when:
o Perceptual variables are varied (e.g. timing, amplitude)
e  Perturbations occur




Encoding a trajectory

Traditionally, the problem of replaying a trajectory has been decomposed

into two different issues:

 One of encoding the trajectory, and

* One of modifying the trajectory, for instance, in case the movement is
perturbed, or when it requires to be modulated.

Our approach: combine both abilities in a nonlinear dynamical system

Aim: to encode the trajectory in a nonlinear dynamical system with well
defined attractor landscape



Nonlinear Dynamical Systems Approach

Discrete movements Rhythmic movements
dy/dt dy/dt
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Two types of movement recordings

S " « Kinesthetic » demonstration
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Pointing Demonstration

331 .
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Shaping Attractor Landscapes

Goal: g

z = az(ﬁZ(g_y)_z) 15 : -
'y a—A 05 ] E%L

'T"tiime [s] 1 U 'i)"?me [s] 1

yd

Can one create more
complex dynamics by non-
linearly modifying the
dynamic system:
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Discreet Control Policy

Output System Goal: g
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Shaping attractor landscapes

Can one create more
complex dynamics by non-
linearly modifying the above
dynamic system:

0 010 02 03 04 05 - 0 01 02 03 04

g = goal
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Shaping Attractor Landscapes

A globally stable learnable nonlinear point attractor:

Trajectory Plan | Al CESIES
Dynamics i y=a, ( f(x,v)+ z)
where
Canonical - a, (,Bv (9—x) _V)
Dynamics A 5 - a\V
~ k
r w.b.v
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Learning the Attractor

Given a demonstrated trajectory y(t)4.m, and a goal g

e Extract movement duration

e Adjust time constants of canonical dynamics to movement
duration

e Use LWL to learn supervised problem

Also extended to rhythmic primitives :
[ Stefan Schaal, Sethu Vijayakumar et al, Proc. of Intl. Symp. Rob. Res.(ISRR) (2001) ]



Trajectory following & Generalization

Backhand Demonstration Backhand Reproduction
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Modulation of Goal: Anchor




Drumming: Modulating Freqguency

Drumming: Kinesthetic Demo
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