
Cognitive Science, 16, 307-354, 1992.

Forward models: Supervised learning

with a distal teacher�

Michael I. Jordan

Department of Brain and Cognitive Sciences

Massachusetts Institute of Technology

David E. Rumelhart

Department of Psychology
Stanford University

Abstract

Internal models of the environment have an important role to play in adap-

tive systems in general and are of particular importance for the supervised

learning paradigm. In this paper we demonstrate that certain classical prob-

lems associated with the notion of the \teacher" in supervised learning can be

solved by judicious use of learned internal models as components of the adap-

tive system. In particular, we show how supervised learning algorithms can be

utilized in cases in which an unknown dynamical system intervenes between

actions and desired outcomes. Our approach applies to any supervised learning

algorithm that is capable of learning in multi-layer networks.

*This paper is a revised version of MIT Center for Cognitive Science Occasional

Paper #40. We wish to thank Michael Mozer, Andrew Barto, Robert Jacobs, Eric

Loeb, and James McClelland for helpful comments on the manuscript. This project

was supported in part by BRSG 2 S07 RR07047-23 awarded by the Biomedical Re-

search Support Grant Program, Division of Research Resources, National Institutes

of Health, by a grant from ATR Auditory and Visual Perception Research Labora-

tories, by a grant from Siemens Corporation, by a grant from the Human Frontier

Science Program, and by grant N00014-90-J-1942 awarded by the O�ce of Naval

Research.

1

Recent work on learning algorithms for connectionist networks has seen a pro-

gressive weakening of the assumptions made about the relationship between the

learner and the environment. Classical supervised learning algorithms such as the

perceptron (Rosenblatt, 1962) and the LMS algorithm (Widrow & Ho�, 1960) made

two strong assumptions: (1) The output units are the only adaptive units in the

network, and (2) there is a \teacher" that provides desired states for all of the

output units. Early in the development of such algorithms it was recognized that

more powerful supervised learning algorithms could be realized by weakening the

�rst assumption and incorporating internal units that adaptively recode the input

representation provided by the environment (Rosenblatt, 1962). The subsequent

development of algorithms such as Boltzmann learning (Hinton & Sejnowski, 1986)

and backpropagation (LeCun, 1985; Parker, 1985; Rumelhart, Hinton, & Williams,

1986; Werbos, 1974) have provided the means for training networks with adaptive

nonlinear internal units. The second assumption has also been weakened|learning

algorithms that require no explicit teacher have been developed (Becker & Hinton,

1989; Grossberg, 1987; Kohonen, 1982; Linsker, 1988; Rumelhart & Zipser, 1986).

Such \unsupervised" learning algorithms generally perform some sort of clustering

or feature extraction on the input data and are based on assumptions about the

statistical or topological properties of the input ensemble.

In this paper we examine in some detail the notion of the \teacher" in the

supervised learning paradigm. We argue that the teacher is less of a liability than

has commonly been assumed and that the assumption that the environment provides

desired states for the output of the network can be weakened signi�cantly without

abandoning the supervised learning paradigm altogether. Indeed, we feel that an

appropriate interpretation of the role of the teacher is crucial in appreciating the

range of problems to which the paradigm can be applied.

The issue that we wish to address is best illustrated by way of an example.

Consider a skill-learning task such as that faced by a basketball player learning

to shoot baskets. The problem for the learner is to �nd the appropriate muscle

commands to propel the ball toward the goal. Di�erent commands are appropriate

for di�erent locations of the goal in the visual scene; thus, a mapping from visual

scenes to muscle commands is required. What learning algorithm might underly

the acquisition of such a mapping? Clearly, clustering or feature extraction on the

visual input is not su�cient. Moreover, it is di�cult to see how to apply classical

supervised algorithms to this problem, because there is no teacher to provide muscle

commands as targets to the learner. The only target information provided to the

learner is in terms of the outcome of the movement; that is, the sights and sounds

of a ball passing through the goal.

The general scenario suggested by the example is shown in Figure 1. Intentions

are provided as inputs to the learning system. The learner transforms intentions

into actions, which are transformed by the environment into outcomes. Actions

are proximal variables; that is, variables that the learner controls directly, while

2

EnvironmentLearner
actionintention outcome

Figure 1: The distal supervised learning problem. Target values are available for the

distal variables (the \outcomes") but not for the proximal variables (the \actions").

outcomes are distal variables, variables that the learner controls indirectly through

the intermediary of the proximal variables. During the learning process, target

values are assumed to be available for the distal variables but not for the proximal

variables. Therefore, from a point of view outside the learning system, a \distal

supervised learning task" is a mapping from intentions to desired outcomes. From

the point of view of the learner, however, the problem is to �nd a mapping from

intentions to actions that can be composed with the environment to yield desired

distal outcomes. The learner must discover how to vary the components of the

proximal action vector so as to minimize the components of the distal error.

The distal supervised learning problem also has a temporal component. In many

environments the e�ects of actions are not punctate and instantaneous, but rather

linger on and mix with the e�ects of other actions. Thus the outcome at any point

in time is in
uenced by any of a number of previous actions. Even if there exists a

set of variables that have a static relationship to desired outcomes, the learner often

does not have direct control over those variables. Consider again the example of

the basketball player. Although the
ight of the ball depends only on the velocity

of the arm at the moment of release{a static relationship{it is unlikely that the

motor control system is able to control release velocity directly. Rather, the system

outputs forces or torques, and these variables do not have a static relationship to

the distal outcome.

In the remainder of the paper we describe a general approach to solving the dis-

tal supervised learning problem. The approach is based on the idea that supervised

learning in its most general form is a two-phase procedure. In the �rst phase the

learner forms a predictive internal model (a forward model) of the transformation

from actions to distal outcomes. Because such transformations are often not known

a priori, the internal model must generally be learned by exploring the outcomes

associated with particular choices of actions. This auxiliary learning problem is it-

self a supervised learning problem, based on the error between internal, predicted

outcomes and actual outcomes. Once the internal model has been at least par-

tially learned, it can be used in an indirect manner to solve for the mapping from

3

intentions to actions.

The idea of using an internal model to augment the capabilities of supervised

learning algorithms has also been proposed by Werbos (1987), although his perspec-

tive di�ers in certain respects from our own. There have been a number of further

developments of the idea (Kawato, 1990; Miyata, 1988; Munro, 1987; Nguyen &

Widrow, 1989; Robinson & Fallside, 1989; Schmidhuber, 1990), based either on the

work of Werbos or our own unpublished work (Jordan, 1983; Rumelhart, 1986).

There are also close ties between our approach and techniques in optimal control

theory (Kirk, 1970) and adaptive control theory (Goodwin & Sin, 1984; Narendra

& Parthasarathy, 1990). We discuss several of these relationships in the remainder

of the paper, although we do not attempt to be comprehensive.

Distal supervised learning and forward models

This section and the following section present a general approach to solving distal

supervised learning problems. We begin by describing our assumptions about the

environment and the learner.

We assume that the environment can be characterized by a next-state function

f and an output function g. At time step n � 1 the learner produces an action

u[n � 1]. In conjunction with the state of the environment x[n � 1] the action

determines the next state x[n]:

x[n] = f(x[n� 1];u[n� 1]): (1)

Corresponding to each state x[n] there is also a sensation y[n]:

y[n] = g(x[n]): (2)

(Note that sensations are output vectors in the current formalism|\outcomes" in

the language of the introductory section). The next-state function and the output

function together determine a state-dependent mapping from actions to sensations.

In the current paper we assume that the learner has access to the state of the

environment; we do not address issues relating to state representation and state

estimation. State representations might involve delayed values of previous actions

and sensations (Ljung & S�oderstr�om, 1986), or they might involve internal state

variables that are induced as part of the learning procedure (Mozer & Bachrach,

1990). Given the state x[n� 1] and given the input p[n� 1], the learner produces

an action u[n � 1]:

u[n� 1] = h(x[n� 1];p[n� 1]):1 (3)

1The choice of time indices in Equations 1, 2, and 3 is based on our focus on the output at time

n. In our framework a learning algorithm alters y[n] based on previous values of the states, inputs,

and actions.

4

Environment
u [n-1]

x [n-1]

y [n]
Learner

p [n-1]

Figure 2: The composite performance system consisting of the learner and the

environment. This system is a mapping from inputs p[n � 1] to sensations y[n].

The training data fpi[n � 1];y�i [n]g specify desired input/output behavior across

the composite system. Note that there is an implicit loop within the environment

such that the output at time n depends on the state at time n� 1 (cf. Equation 1).

The goal of the learning procedure is to make appropriate adjustments to the input-

to-action mapping h based on data obtained from interacting with the environment.

A distal supervised learning problem is a set of training pairs fpi[n� 1];y�i [n]g,

where pi[n � 1] are the input vectors and y�i [n] are the corresponding desired sen-

sations. For example, in the basketball problem, the input might be a high-level

intention of shooting a basket, and a desired sensation would be the correspond-

ing visual representation of a successful outcome. Note that the distal supervised

learning problem makes no mention of the actions that the learner must acquire;

only inputs and desired sensations are speci�ed. From a point of view outside the

learning system the training data specify desired input/output behavior across the

composite performance system consisting of the learner and the environment (see

Figure 2). From the point of view of the learner, however, the problem is to �nd

a mapping from inputs p[n � 1] to actions u[n � 1] such that the resulting distal

sensations y[n] are the target values y�[n]. That is, the learner must �nd a mapping

from inputs to actions that can be placed in series with the environment so as to

yield the desired pairing of inputs and sensations. Note that there may be more

than one action that yields a given desired sensation from any given state; that is,

the distal supervised learning problem may be underdetermined. Thus, in the bas-

ketball example, there may be a variety of patterns of motor commands that yield

the same desired sensation of seeing of the ball pass through the goal.

Forward models

The learner is assumed to be able to observe states, actions, and sensations and can

therefore model the mapping between actions and sensations. A forward model is an

internal model that produces a predicted sensation ŷ[n] based on the state x[n� 1]

and the action u[n � 1]. That is, a forward model predicts the consequences of a

5

+
Forward
 Model

Environment

[n-1]x

u [n-1]

y [n]

y [n]

^ _

Figure 3: Learning the forward model using the prediction error y[n]� ŷ[n].

given action in the context of a given state vector. As shown in Figure 3, the forward

model can be learned by comparing predicted sensations to actual sensations and

using the resulting prediction error to adjust the parameters of the model. Learning

the forward model is a classical supervised learning problem in which the teacher

provides target values directly in the output coordinate system of the learner.2

Distal supervised learning

We now describe a general approach to solving the distal supervised learning prob-

lem. Consider the system shown in Figure 4, in which the learner is placed in series

with a forward model of the environment. This composite learning system is a state-

dependent mapping from inputs to predicted sensations. Suppose that the forward

model has been trained previously and is a perfect model of the environment; that

is, the predicted sensation equals the actual sensation for all actions and all states.

2In the engineering literature, this learning process is referred to as \system identi�cation"

(Ljung & S�oderstr�om, 1986).

6

u [n-1]

x [n-1]

Forward
 Model

y [n]^

Learner
p [n-1]

Figure 4: The composite learning system. This composite system maps from inputs

p[n� 1] to predicted sensations ŷ[n] in the context of a given state vector.

We now treat the composite learning system as a single supervised learning system

and train it to map from inputs to desired sensations according to the data in the

training set. That is, the desired sensations y�i are treated as targets for the compos-

ite system. Any supervised learning algorithm can be used for this training process;

however, the algorithm must be constrained so that it does not alter the forward

model while the composite system is being trained. By �xing the forward model,

we require the system to �nd an optimal composite mapping by varying only the

mapping from inputs to actions. If the forward model is perfect, and if the learning

algorithm �nds the globally optimal solution, then the resulting (state-dependent)

input-to-action mapping must also be perfect in the sense that it yields the desired

composite input/output behavior when placed in series with the environment.

Consider now the case of an imperfect forward model. Clearly an imperfect

forward model will yield an imperfect input-to-action map if the composite system

is trained in the obvious way, using the di�erence between the desired sensation and

the predicted sensation as the error term. This di�erence, the predicted performance

error (y� � ŷ), is readily available at the output of the composite system, but it

is an unreliable guide to the true performance of the learner. Suppose instead that

we ignore the output of the composite system and substitute the performance error

(y� � y) as the error term for training the composite system (see Figure 5). If the

performance error goes to zero the system has found a correct input-to-action map,

regardless of the inaccuracy of the forward model. The inaccuracy in the forward

model manifests itself as a bias during the learning process, but need not prevent

the performance error from going to zero. Consider, for example, algorithms based

on steepest descent. If the forward model is not too inaccurate the system can still

move downhill and thereby reach the solution region, even though the movement is

not in the direction of steepest descent.

To summarize, we propose to solve the distal supervised learning problem by

training a composite learning system consisting of the learner and a forward model

of the environment. This procedure solves implicitly for an input-to-action map by

7

u [n-1]

x [n-1] y [n]y *[n] _

Forward
 ModelLearner

p [n-1]

Figure 5: The composite system is trained using the performance error. The forward

model is held �xed while the composite system is being trained.

training the composite system to map from inputs to distal targets. The training

of the forward model must precede the training of the composite system, but the

forward model need not be perfect, nor need it be pre-trained throughout all of state

space. The ability of the system to utilize an inaccurate forward model is important;

it implies that it may be possible to interleave the training of the forward model

and the composite system.

In the remainder of the paper, we discuss the issues of interleaved training,

inaccuracy in the forward model, and the choice of the error term in more detail.

We �rst turn to an interesting special case of the general distal supervised learning

problem|that of learning an inverse model of the environment.

Inverse models

An inverse model is an internal model that produces an action u[n�1] as a function

of the current state x[n � 1] and the desired sensation y�[n]. Inverse models are

de�ned by the condition that they yield the identity mapping when placed in series

with the environment.

Inverse models are important in a variety of domains. For example, if the en-

vironment is viewed as a communications channel over which a message is to be

transmitted, then it may be desirable to undo the distorting e�ects of the envi-

ronment by placing it in series with an inverse model (Carlson, 1986). A second

example, shown in Figure 6, arises in control system design. A controller receives the

desired sensation y�[n] as input and must �nd actions that cause actual sensations

to be as close as possible to desired sensations; that is, the controller must invert

8

Inverse
 Model Environment

u [n-1]

x [n-1]

y [n]y *[n]

Figure 6: An inverse model as a controller.

the transformation from actions to sensations.3 One approach to achieving this

objective is to utilize an explicit inverse model of the environment as a controller.

Whereas forward models are uniquely determined by the environment, inverse

models are generally not. If the environment is characterized by a many-to-one

mapping from actions to sensations then there are generally an in�nite number of

possible inverse models. It is also worth noting that inverses do not always exist|

it is not always possible to achieve a particular desired sensation from any given

state. As we shall discuss, these issues of existence and uniqueness have important

implications for the problem of learning an inverse model.

There are two general approaches to learning inverse models using supervised

learning algorithms: the distal learning approach presented above and an alternative

approach that we refer to as \direct inverse modeling" (cf. Jordan & Rosenbaum,

1989). We begin by describing the latter approach.

Direct inverse modeling

Direct inverse modeling treats the problem of learning an inverse model as a classical

supervised learning problem (Widrow & Stearns, 1985). As shown in Figure 7, the

idea is to observe the input/output behavior of the environment and to train an

inverse model directly by reversing the roles of the inputs and outputs. Data are

provided to the algorithm by sampling in action space and observing the results in

sensation space.

Although direct inverse modeling has been shown to be a viable technique in

a number of domains (Atkeson & Reinkensmeyer, 1988; Kuperstein, 1988; Miller,

1987), it has two drawbacks that limit its usefulness. First, if the environment is

characterized by a many-to-one mapping from actions to sensations, then the di-

rect inverse modeling technique may be unable to �nd an inverse. The di�culty is

that nonlinear many-to-one mappings can yield nonconvex inverse images, which are

3Control system design normally involves a number of additional constraints involving stability

and robustness; thus, the goal is generally to invert the environment as nearly as possible subject

to these additional constraints.

9

+

Environment

[n-1]x

u [n-1] y [n]

_
Inverse
 Model

Figure 7: The direct inverse modeling approach to learning an inverse model.

problematic for direct inverse modeling.4 Consider the situation shown in Figure 8.

The nonconvex region on the left is the inverse image of a point in sensation space.

Suppose that the points labelled by X's are sampled during the learning process.

Three of these points correspond to the same sensation; thus, the training data as

seen by the direct inverse modeling procedure are one-to-many|one input is paired

with many targets. Supervised learning algorithms resolve one-to-many inconsisten-

cies by averaging across the multiple targets (the form of the averaging depends on

the particular cost function that is used). As is shown in the �gure, however, the

average of points lying in a nonconvex set does not necessarily lie in the set. Thus

the globally optimal (minimum-cost) solution found by the direct inverse modeling

approach is not necessarily a correct inverse model. (We present an example of such

behavior in a following section).

The second drawback with direct inverse modeling is that it is not \goal-

directed." The algorithm samples in action space without regard to particular

targets or errors in sensation space. That is, there is no direct way to �nd an

action that corresponds to a particular desired sensation. To obtain particular so-

lutions the learner must sample over a su�ciently wide range of actions and rely on

interpolation.

Finally, it is also important to emphasize that direct inverse modeling is re-

stricted to the learning of inverse models|it is not applicable to the general distal

4A set is convex if for every pair of points in the set all points on the line between the points

also lie in the set.

10

.

Action space Sensation space

Figure 8: The convexity problem. The region on the left is the inverse image of

the point on the right. The arrow represents the direction in which the mapping is

learned by direct inverse modeling. The three points lying inside the inverse image

are averaged by the learning procedure, yielding the vector represented by the small

circle. This point is not a solution, because the inverse image is not convex.

supervised learning problem.

The distal learning approach to learning an inverse model

The methods described earlier in this section are directly applicable to the problem

of learning an inverse model. The problem of learning an inverse model can be

treated as a special case of the distal supervised learning problem in which the

input vector and the desired sensation are the same (that is, p[n � 1] is equal to

y�[n] in Equation 3). Thus, an inverse model is learned by placing the learner and

the forward model in series and learning an identity mapping across the composite

system.5

A fundamental di�erence between the distal learning approach and direct in-

verse modeling approach is that rather than averaging over regions in action space,

the distal learning approach �nds particular solutions in action space. The globally

optimal solution for distal learning is a set of vectors fuig such that the performance

5An interesting analogy can be drawn between the distal learning approach and indirect tech-

niques for solving systems of linear equations. In numerical linear algebra, rather than solving

explicitly for a generalized inverse of the coe�cient matrix, solutions are generally found indirectly

(e.g., by applying Gaussian elimination to both sides of the equation GA = I, where I is the identity

matrix).

11

errors fy�i � yig are zero. This is true irrespective of the shapes of the inverse im-

ages of the targets y�i . Vectors lying outside of an inverse image, such as the average

vector shown in Figure 8, do not yield zero performance error and are therefore not

globally optimal. Thus nonconvex inverse images do not present the same funda-

mental di�culties for the distal learning framework as they do for direct inverse

modeling.

It is also true that the distal learning approach is fundamentally goal-directed.

The system works to minimize the performance error; thus, it works directly to �nd

solutions that correspond to the particular goals at hand.

In cases in which the forward mapping is many-to-one, the distal learning pro-

cedure �nds a particular inverse model. Without additional information about the

particular structure of the input-to-action mapping there is no way of predicting

which of the possibly in�nite set of inverse models the procedure will �nd. As is

discussed below, however, the procedure can also be constrained to �nd particular

inverse models with certain desired properties.

Distal learning and backpropagation

In this section we describe an implementation of the distal learning approach that

utilizes the machinery of the backpropagation algorithm. It is important to empha-

size at the outset, however, that backpropagation is not the only algorithm that can

be used to implement the distal learning approach. Any supervised learning algo-

rithm can be used as long as it is capable of learning a mapping across a composite

network that includes a previously trained subnetwork; in particular, Boltzmann

learning is applicable (Jordan, 1983).

We begin by introducing a useful shorthand for describing backpropagation in

layered networks. A layered network can be described as a parameterized mapping

from an input vector x to an output vector y:

y = �(x;w); (4)

wherew is a vector of parameters (weights). In the classical paradigm, the procedure

for changing the weights is based on the discrepancy between a target vector y� and

the actual output vector y. The magnitude of this discrepancy is measured by a

cost functional of the form:

J =
1

2
(y� � y)T (y� � y): (5)

(J is the sum of squared error at the output units of the network). It is generally

desired to minimize this cost.

Backpropagation is an algorithm for computing gradients of the cost functional.

The details of the algorithm can be found elsewhere (e.g., Rumelhart, et al., 1986);

our intention here is to develop a simple notation that hides the details. This is

12

achieved formally by using the chain rule to di�erentiate J with respect to the

weight vector w:

rwJ = �
@y

@w

T

(y� � y): (6)

This equation shows that any algorithm that computes the gradient of J e�ectively

multiplies the error vector y� � y by the transpose Jacobian matrix (@y=@w)T .6

Although the backpropagation algorithm never forms this matrix explicitly (back-

propagation is essentially a factorization of the matrix; Jordan, 1988), Equation 6

nonetheless describes the results of the computation performed by backpropagation.7

Backpropagation also computes the gradient of the cost functional with respect

to the activations of the units in the network. In particular, the cost functional J

can be di�erentiated with respect to the activations of the input units to yield:

rxJ = �
@y

@x

T

(y� � y): (7)

We refer to Equation 6 as \backpropagation-to-weights" and Equation 7 as \back-

propagation-to-activation." Both computations are carried out in one pass of the

algorithm; indeed, backpropagation-to-activation is needed as an intermediate step

in the backpropagation-to-weights computation.

In the remainder of this section we formulate two broad categories of learning

problems that lie within the scope of the distal learning approach and derive ex-

pressions for the gradients that arise. For simplicity it is assumed in both of these

derivations that the task is to learn an inverse model (that is, the inputs and the

distal targets are assumed to be identical). The two formulations of the distal learn-

ing framework focus on di�erent aspects of the distal learning problem and have

di�erent strengths and weaknesses. The �rst approach, the \local optimization"

formulation, focuses on the local dynamical structure of the environment. Because

it assumes that the learner is able to predict state transitions based on information

that is available locally in time, it depends on prior knowledge of an adequate set

of state variables for describing the environment. It is most naturally applied to

problems in which target values are provided at each moment in time, although it

can be extended to problems in which target values are provided intermittently (as

we demonstrate in a following section). All of the computations needed for the local

6The Jacobian matrix of a vector function is simply its �rst derivative|it is a matrix of �rst

partial derivatives. That is, the entries of the matrix (@y=@w) are the partial derivatives of the

each of the output activations with respect to each of the weights in the network.
7To gain some insight into why a transpose matrix arises in backpropagation, consider a single-

layer linear network described by y = Wx, where W is the weight matrix. The rows of W are the

incoming weight vectors for the output units of the network, and the columns ofW are the outgoing

weight vectors for the input units of the network. Passing a vector forward in the network involves

taking the inner product of the vector with each of the incoming weight vectors. This operation

corresponds to multiplication by W . Passing a vector backward in the network corresponds to
taking the inner product of the vector with each of the outgoing weight vectors. This operation

corresponds to multiplication by WT , because the rows of WT are the columns of W .

13

optimization formulation can be performed in feedforward networks, thus there is no

problem with stability. The second approach, the \optimization-along-trajectories"

formulation, focuses on global temporal dependencies along particular target tra-

jectories. The computation needed to obtain these dependencies is more complex

than the computation needed for the local optimization formulation, but it is more

exible. It can be extended to cases in which a set of state variables is not known a

priori and it is naturally applied to problems in which target values are provided in-

termittently in time. There is potentially a problem with stability, however, because

the computations for obtaining the gradient involve a dynamical process.

Local optimization

The �rst problem formulation that we discuss is a local optimization problem. We

assume that the process that generates target vectors is stationary and consider the

following general cost functional:

J =
1

2
Ef(y�� y)T(y� � y)g; (8)

where y is an unknown function of the state x and the action u. The action u is

the output of a parameterized inverse model of the form:

u = h(x;y�;w);

where w is a weight vector.

Rather than optimizing J directly, by collecting statistics over the ensemble of

states and actions, we utilize an online learning rule (cf. Widrow & Stearns, 1985)

that makes incremental changes to the weights based on the instantaneous value of

the cost functional:

Jn =
1

2
(y�[n]� y[n])T(y�[n]� y[n]): (9)

An online learning algorithm changes the weights at each time step based on the

stochastic gradient of J ; that is, the gradient of Jn:

w[n+ 1] = w[n]� �rwJn;

where � is a step size. To compute this gradient the chain rule is applied to Equa-

tion 9:

rwJn = �
@u

@w

T
@y

@u

T

(y�[n]� y[n]); (10)

where the Jacobian matrices (@y=@u) and (@u=@w) are evaluated at time n�1. The

�rst and the third factors in this expression are easily computed: The �rst factor

describes the propagation of derivatives from the output units of the inverse model

(the \action units") to the weights of the inverse model, and the third factor is the

14

distal error. The origin of the second factor is problematic, however, because the

dependence of y on u is assumed to be unknown a priori. Our approach to obtaining

an estimate of this factor has two parts: First, the system acquires a parameterized

forward model over an appropriate subdomain of the state space. This model is of

the form:

ŷ = f̂ (x;u;v); (11)

where v is a vector of weights and ŷ is the predicted sensation. Second, the distal

error is propagated backward through the forward model; this e�ectively multiplies

the distal error by an estimate of the transpose Jacobian matrix (@y=@u).

Putting these pieces together, the algorithm for learning the inverse model is

based on the following estimated stochastic gradient:

r̂wJn = �
@u

@w

T
@ŷ

@u

T

(y�[n]� y[n]): (12)

This expression describes the propagation of the distal error (y�[n]�y[n]) backward

through the forward model and down into the inverse model where the weights are

changed.8 The network architecture in which these computations take place is shown

in Figure 9. This network is a straightforward realization of the block diagram in

Figure 5. It is composed of an inverse model, which links the state units and the

input units to the action units, and a forward model, which links the state units

and the action units to the predicted-sensation units.

Learning the forward model

The learning of the forward model can itself be formulated as an optimization prob-

lem, based on the following cost functional:

L =
1

2
Ef(y� ŷ)T (y� ŷ)g;

where ŷ is of the form given in Equation 11. Although the choice of procedure for

�nding a set of weights v to minimize this cost is entirely independent of the choice

of procedure for optimizing J in Equation 8, it is convenient to base the learning of

the forward model on a stochastic gradient as before:

rvLn = �
@ŷ

@v

T

(y[n]� ŷ[n]); (13)

where the Jacobian matrix (@ŷ=@v) is evaluated at time n�1. This gradient can be

computed by the propagation of derivatives within the forward model and therefore

requires no additional hardware beyond that already required for learning the inverse

model.
8Note that the error term (y�[n]� y[n]) is not a function of the output of the forward model;

nonetheless, activation must
ow forward in the model because the estimated Jacobian matrix

(@ŷ=@u) varies as a function of the activations of the hidden units and the output units of the

model.

15

State
Units

State
Units

Input
Units

Action
 Units

Predicted
Sensation
 Units

-

Inverse Model Forward Model

Figure 9: A feedforward network that includes a forward model. The action units

are the output units of the system.

Name Source

y� � y performance error environment, environment

y� ŷ prediction error environment, model

y� � ŷ predicted performance error environment, model

Table 1: The error signals and their sources

The error signals

It is important to clarify the meanings of the error signals used in Equations 12 and

13. As shown in Table 1, there are three error signals that can be formed from the

variables y, ŷ, and y�|the prediction error y�ŷ, the performance error y��y, and

the predicted performance error y�� ŷ. All three of these error signals are available

to the learner because each of the signals y�, y and ŷ are available individually|the

target y� and the actual sensation y are provided by the environment, whereas the

predicted sensation ŷ is available internally.

16

For learning the forward model, the prediction error is clearly the appropriate

error signal. The learning of the inverse model, however, can be based on either the

performance error or the predicted performance error. Using the performance error

(see Equation 12) has the advantage that the system can learn an exact inverse model

even though the forward model is only approximate. There are two reasons for this:

�rst, Equation 12 preserves the minima of the cost functional in Equation 9|they

are zeros of the estimated gradient. That is, an inaccurate Jacobian matrix cannot

remove zeros of the estimated gradient (points at which y� � y is zero), although

it can introduce additional zeros (spurious local minima). Second, if the estimated

gradients obtained with the approximate forward model have positive inner product

with the stochastic gradient in Equation 10, then the expected step of the algorithm

is downhill in the cost. Thus the algorithm can in principle �nd an exact inverse

model even though the forward model is only approximate.

There may also be advantages to using the predicted performance error. In

particular, it may be easier in some situations to obtain learning trials using the

internal model rather than the external environment (Rumelhart, Smolensky, Mc-

Clelland, & Hinton, 1986; Sutton, 1990). Such internal trials can be thought of as a

form of \mental practice" (in the case of backpropagation-to-weights) or \planning"

(in the case of backpropagation-to-activation). These procedures lead to improved

performance if the forward model is su�ciently accurate. (Exact solutions cannot

be found with such procedures, however, unless the forward model is exact).

Modularity

In many cases the unknown mapping from actions to sensations can be decomposed

into a series of simpler mappings, each of which can be modeled independently. For

example, it may often be preferable to model the next-state function and the output

function separately rather than modeling them as a single composite function. In

such cases, the Jacobian matrix (@ŷ=@u) can be factored using the chain rule to

yield the following estimated stochastic gradient:

r̂wJn = �
@u

@w

T
@x̂

@u

T
@ŷ

@x

T

(y�[n]� y[n]): (14)

The estimated Jacobian matrices in this expression are obtained by propagating

derivatives backward through the corresponding forward models, each of which are

learned separately.

Optimization along trajectories9

A complete inverse model allows the learner to synthesize the actions that are needed

to follow any desired trajectory. In the local optimization formulation we e�ectively

9This section is included for completeness and is not needed for the remainder of the paper.

17

assume that the learning of an inverse model is of primary concern and the learning

of particular target trajectories is secondary. The learning rule given by Equation 12

�nds actions that invert the dynamics of the environment at the current point in

state space, regardless of whether that point is on a desired trajectory or not. In

terms of network architectures, this approach leads to using feedforward networks

to model the local forward and inverse state transition structure (see Figure 9).

In the current section we consider a more specialized problem formulation in

which the focus is on particular classes of target trajectories. This formulation is

based on variational calculus and is closely allied with methods in optimal con-

trol theory (Kirk, 1970; LeCun, 1987). The algorithm that results is a form of

\backpropagation-in-time" (Rumelhart, Hinton, & Williams, 1986) in a recurrent

network that incorporates a learned forward model. The algorithm di�ers from the

algorithm presented above in that it not only inverts the relationship between ac-

tions and sensations at the current point in state space but also moves the current

state toward the desired trajectory.

We consider an ensemble of target trajectories fy��[n]g and de�ne the following

cost functional:

J =
1

2
Ef

N�X
n=1

(y��[n]� y�[n])
T(y��[n]� y�[n])g; (15)

where � is an index across target trajectories and y� is an unknown function of the

state x� and the action u�. The action u� is a parameterized function of the state

x� and the target y��:

u� = h(x�;y
�

�;w):

As in the previous formulation, we base the learning rule on the stochastic gradient

of J , that is, the gradient evaluated along a particular sample trajectory y�:

J� =
1

2

N�X
n=1

(y��[n]� y�[n])
T (y��[n]� y�[n]): (16)

The gradient of this cost functional can be obtained using the calculus of variations

(see also LeCun, 1987, Narendra & Parthasarathy, 1990). Letting �[n] represent the

vector of partial derivatives of J� with respect to x�[n], and letting 	[n] represent

the vector of partial derivatives of J� with respect to u�[n], Appendix A shows that

the gradient of J� is given by the following recurrence relations:

�[n� 1] =
@z�

@x�

T

�[n] +
@u�

@x�

T

	[n]�
@y�

@x�

T

(y��[n]� y�[n]) (17)

	[n] =
@z�

@u�

T

�[n] (18)

and

rwJ�[n] =
@u�

@w

T

	[n]; (19)

18

State
Units

State
Units

Input
Units

Action
 Units

Predicted
Sensation
 Units

D

D

Predicted
Next-State

Units

- -

Figure 10: A recurrent network with a forward model. The boxes labeled by D's

are unit delay elements.

where the Jacobian matrices are all evaluated at time step n and z� stands for

x�[n + 1] (thus, the Jacobian matrices (@z�=@x�) and (@z�=@u�) are the deriva-

tives of the next-state function). This expression describes backpropagation-in-time

in a recurrent network that incorporates a forward model of the next-state func-

tion and the output function. As shown in Figure 10, the recurrent network is

essentially the same as the network in Figure 9, except that there are explicit con-

nections with unit delay elements between the next-state and the current state.10

Backpropagation-in-time propagates derivatives backward through these recurrent

connections as described by the recurrence relations in Equations 17 and 18.

As in the local optimization case, the equations for computing the gradient

10Alternatively, Figure 9 can be thought of as a special case of Figure 10 in which the backprop-

agated error signals stop at the state units (cf. Jordan, 1986).

19

involve the multiplication of the performance error y� � y by a series of transpose

Jacobian matrices, several of which are unknown a priori. Our approach to esti-

mating the unknown factors is once again to learn forward models of the underlying

mappings and to propagate signals backward through the models. Thus the Jacobian

matrices (@z�=@u�), (@z�=@x�), and (@y�=@x�) in Equations 17, 18, and 19 are

all replaced by estimated quantities in computing the estimated stochastic gradient

of J .

In the following two sections, we pursue the presentation of the distal learning

approach in the context of two problem domains. The �rst section describes learning

in a static environment, whereas the second section describes learning in a dynamic

environment. In both sections, we utilize the local optimization formulation of distal

learning.

Static environments

An environment is said to be static if the e�ect of any given action is independent of

the history of previous actions. In static environments the mapping from actions to

sensations can be characterized without reference to a set of state variables. Such

environments provide a simpli�ed domain in which to study the learning of inverse

mappings. In this section, we present an illustrative static environment and focus

on two issues: (1) the e�ects of nonconvex inverse images in the transformation from

sensations to actions and (2) the problem of goal-directed learning.

The problem that we consider is that of learning the forward and inverse kine-

matics of a three-joint planar arm. As shown in Figure 11 and Figure 12 the con-

�guration of the arm is characterized by the three joint angles q1; q2; and q3, and

the corresponding pair of Cartesian variables x1 and x2. The function that relates

these variables is the forward kinematic function x = g(q). It is obtained in closed

form using elementary trigonometry:"
x1

x2

#
=

"
l1cos(q1) + l2cos(q1 + q2) + l3cos(q1 + q2 + q3)

l1sin(q1) + l2sin(q1 + q2) + l3sin(q1 + q2 + q3)

#
; (20)

where l1; l2; and l3 are the link lengths.

The forward kinematic function g(q) is a many-to-one mapping|for every

Cartesian position that is inside the boundary of the workspace, there are an in�-

nite number of joint angle con�gurations to achieve that position. This implies that

the inverse kinematic relation g
�1(x) is not a function; rather, there are an in�nite

number of inverse kinematic functions corresponding to particular choices of points

q in the inverse images of each of the Cartesian positions. The problem of learning

an inverse kinematic controller for the arm is that of �nding a particular inverse

among the many possible inverse mappings.

20

q
1

q
2

q
3

(x1, x2)

Figure 11: A three-joint planar arm.

Controller
*

Arm
xqx

Figure 12: The forward and inverse mappings associated with arm kinematics.

Simulations

In the simulations reported below, the joint-angle con�gurations of the arm were

represented using the vector [cos(q1 �
�
2
); cos(q2); cos(q3)]

T , rather than the vector

of joint angles. This e�ectively restricts the motion of the joints to the intervals

[��
2
;
�
2
], [0; �], and [0; �], respectively, assuming that each component of the joint-

angle con�guration vector is allowed to range over the interval [�1; 1]. The Cartesian

variables x1 and x2 were represented as real numbers ranging over [�1; 1]. In all of

the simulations, these variables were represented directly as real-valued activations

of units in the network. Thus, three units were used to represent joint-angle con�g-

urations and two units were used to represent Cartesian positions. Further details

on the simulations are provided in Appendix B.

21

The nonconvexity problem

One approach to learning an inverse mapping is to provide training pairs to the

learner by observing the input/output behavior of the environment and reversing

the role of the inputs and outputs. This approach, which we referred to earlier as

\direct inverse modeling," has been proposed in the domain of inverse kinematics

by Kuperstein (1988). Kuperstein's idea is to randomly sample points q0 in joint

space and to use the real arm to evaluate the forward kinematic function x = g(q0),

thereby obtaining training pairs (x;q0) for learning the controller. The controller is

learned by optimization of the following cost functional:

J =
1

2
Ef(q0� q)T (q0 � q)g (21)

where q = h(x�) is the output of the controller.

As we discussed earlier, a di�culty with the direct inverse modeling approach

is that the optimization of the cost functional in Equation 21 does not necessarily

yield an inverse kinematic function. The problem arises because of the many-to-one

nature of the forward kinematic function (cf. Figure 8). In particular, if two or

more of the randomly sampled points q0 happen to map to the same endpoint, then

the training data that is provided to the controller is one-to-many. The particular

manner in which the inconsistency is resolved depends on the form of the cost

functional|use of the sum-of-squared error given in Equation 21 yields an arithmetic

average over points that map to the same endpoint. An average in joint space,

however, does not necessarily yield a correct result in Cartesian space, because

the inverse images of nonlinear transformations are not necessarily convex. This

implies that the output of the controller may be in error even though the system

has converged to the minimum of the cost functional.

In Figure 13 we demonstrate that the inverse kinematics of the three-joint arm

is not convex. To see if this nonconvexity has the expected e�ect on the direct inverse

modeling procedure we conducted a simulation in which a feedforward network with

one hidden layer was used to learn the inverse kinematics of the three-joint arm.

The simulation provided target vectors to the network by sampling randomly from

a uniform distribution in joint space. Input vectors were obtained by mapping the

target vectors into Cartesian space according to Equation 20. The initial value of the

root-mean-square (RMS) joint-space error was 1:41, �ltered over the �rst 500 trials.

After 50; 000 learning trials the �ltered error reached asymptote at a value of 0:43.

A vector �eld was then plotted by providing desired Cartesian vectors as inputs

to the network, obtaining the joint-angle outputs, and mapping these outputs into

Cartesian space using Equation 20. The resulting vector �eld is shown in Figure 14.

As can be seen, there is substantial error at many positions of the workspace, even

though the learning algorithm has converged. If training is continued, the loci of

the errors continue to shift, but the RMS error remains approximately constant. Al-

though this error is partially due to the �nite learning rate and the random sampling

22

Figure 13: The nonconvexity of inverse kinematics. The dotted con�guration is an

average in joint space of the two solid con�gurations.

procedure (\misadjustment," see Widrow & Stearns, 1985), the error remains above

0:4 even when the learning rate is taken to zero. Thus, misadjustment cannot ac-

count for the error, which must be due to the nonconvexity of the inverse kinematic

relation. Note, for example, that the error observed in Figure 13 is reproduced in

the lower left portion of Figure 14.

In Figure 15, we demonstrate that the distal learning approach can �nd a par-

ticular inverse kinematic mapping. We performed a simulation that was initialized

with the incorrect controller obtained from direct inverse modeling. The simula-

tion utilized a forward model that had been trained previously (the forward model

was trained during the direct inverse modeling trials). A grid of 285 evenly spaced

positions in Cartesian space was used to provide targets during the second phase

of the distal learning procedure.11 On each trial the error in Cartesian space was

passed backward through the forward model and used to change the weights of the

controller. After 28; 500 such learning trials (100 passes through the grid of tar-

gets), the resulting vector �eld was plotted. As shown in the �gure, the vector error

decreases toward zero throughout the workspace; thus, the controller is converging

toward a particular inverse kinematic function.

11The use of a grid is not necessary; the procedure also works if Cartesian positions are sampled

randomly on each trial.

23

Figure 14: Near-asymptotic performance of direct inverse modeling. Each vector

represents the error at a particular position in the workspace.

Additional constraints

A further virtue of the distal learning approach is the ease with which it is possible

to incorporate additional constraints in the learning procedure and thereby bias the

choice of a particular inverse function. For example, a minimum-norm constraint

can be realized by adding a penalty term of the form ��x to the propagated errors

at the output of the controller. Temporal smoothness constraints can be realized by

incorporating additional error terms of the form �(x[n]�x[n�1]). Such constraints

can be de�ned at other sites in the network as well, including the output units or

hidden units of the forwardmodel. It is also possible to provide additional contextual

inputs to the controller and thereby learn multiple, contextually-appropriate inverse

functions. These aspects of the distal learning approach are discussed in more detail

in Jordan (1988, 1990).

Goal-directed learning

Direct inverse modeling does not learn in a goal-directed manner. To learn a speci�c

Cartesian target, the procedure must sample over a su�ciently large region of joint

space and rely on interpolation. Heuristics may be available to restrict the search

to certain regions of joint space, but such heuristics are essentially prior knowledge

24

Figure 15: Near-asymptotic performance of distal learning.

about the nature of the inverse mapping and can equally well be incorporated into

the distal learning procedure.

Distal learning is fundamentally goal-directed. It is based on the performance

error for a speci�c Cartesian target and is capable of �nding an exact solution for a

particular target in a small number of trials. This is demonstrated by the simulation

shown in Figure 16. Starting from the controller shown in Figure 14, a particular

Cartesian target was presented for ten successive trials. As shown in Figure 16, the

network reorganizes itself so that the error is small in the vicinity of the target.

After ten additional trials, the error at the target is zero within the
oating-point

resolution of the simulation.

Approximate forward models

We conducted an additional simulation to study the e�ects of inaccuracy in the

forward model. The simulation varied the number of trials allocated to the learning

of the forwardmodel from 50 to 5000. The controller was trained to an RMS criterion

of 0.001 at the three target positions (�0:25; 0:25), (0:25; 0:25), and (0:0; 0:65). As

shown in Figure 17, the results demonstrate that an accurate controller can be

found with an inaccurate forward model. Fewer trials are needed to learn the target

positions to criterion with the most accurate forward model; however, the dropo�

in learning rate with less accurate forward models is relatively slight. Reasonably

25

Figure 16: Goal-directed learning. A Cartesian target in the lower right portion of

the �gure was presented for ten successive trials. The error vectors are close to zero

in the vicinity of the target.

rapid learning is obtained even when the forward model is trained for only 50 trials,

even though the average RMS error in the forward model is 0:34 m after 50 trials,

compared to 0:11 m after 5000 trials.

Further comparisons with direct inverse modeling

In problems with many output variables it is often unrealistic to acquire an inverse

model over the entire workspace. In such cases the goal-directed nature of distal

learning is particularly important because it allows the system to obtain inverse

images for a restricted set of locations. However, the forward model must also be

learned over a restricted region of action space, and there is no general a priori

method for determining the appropriate region of the space in which to sample.

That is, although distal learning is goal-directed in its acquisition of the inverse

model, it is not inherently goal-directed in its acquisition of the forward model.

Because neither direct inverse modeling nor distal learning is entirely goal-

directed, in any given problem it is important to consider whether it is more rea-

sonable to acquire the inverse model or the forward model in a non-goal-directed

26

500040003000200010000
0

1000

2000

3000

Forward model training (trials)

C
o

n
tr

o
lle

r
tr

ai
n

in
g

 (
tr

ia
ls

 t
o

 c
ri

te
ri

o
n

)

Figure 17: Number of trials required to train the controller to an RMS criterion of

0.001 as a function of the number of trials allocated to training the forward model.

Each point is an average over three runs.

manner. This issue is problem-dependent, depending on the nature of the function

being learned, the nature of the class of functions that can be represented by the

learner, and the nature of the learning algorithm. It is worth noting, however, that

there is an inherent tradeo� in complexity between the inverse model and the for-

ward model, due to the fact that their composition is the identity mapping. This

tradeo� suggests a complementarity between the classes of problems for which direct

inverse modeling and distal learning are appropriate. We believe that distal learning

is more generally useful, however, because an inaccurate forward model is generally

acceptable whereas an inaccurate inverse model is not. In many cases, it may be

preferable to learn an inaccurate forward model that is speci�cally inverted at a

desired set of locations rather than learning an inaccurate inverse model directly

and relying on interpolation.

27

Dynamic environments: One-step dynamic models

To illustrate the application of distal learning to problems in which the environment

has state, we consider the problem of learning to control a two-joint robot arm. Con-

trolling a dynamic robot arm involves �nding the appropriate torques to cause the

arm to follow desired trajectories. The problem is di�cult because of the nonlinear

couplings between the motions of the two links and because of the �ctitious torques

due to the rotating coordinate systems.

The arm that we consider is the two-link version of the arm shown previously in

Figure 11. Its con�guration at each point in time is described by the joint angles q1(t)

and q2(t), and by the Cartesian variables x1(t) and x2(t). The kinematic function

x(t) = g(q(t)) that relates joint angles to Cartesian variables can be obtained by

letting l3 equal zero in Equation 20:"
x1(t)

x2(t)

#
=

"
l1cos(q1(t)) + l2cos(q1(t) + q2(t))

l1sin(q1(t)) + l2sin(q1(t) + q2(t))

#
;

where l1 and l2 are the link lengths. The state space for the arm is the four-

dimensional space of positions and velocities of the links.

The essence of robot arm dynamics is a mapping between the torques applied

at the joints and the resulting angular accelerations of the links. This mapping is

dependent on the state variables of angle and angular velocity. Let q, _q, and �q

represent the vector of joint angles, angular velocities, and angular accelerations,

respectively, and let � represent the torques. In the terminology of earlier sections,

q and _q together constitute the \state" and � is the \action." For convenience,

we take �q to represent the \next-state" (see the discussion below). To obtain an

analog of the next-state function in Equation 1, the following di�erential equation

can be derived for the angular motion of the links, using standard Newtonian or

Lagrangian dynamical formulations (Craig, 1986):

M(q)�q+ C(q; _q) _q+ G(q) = � ; (22)

where M(q) is an inertia matrix, C(q; _q) is a matrix of Coriolis and centripetal

terms, and G(q) is the vector of torque due to gravity. Our interest is not in the

physics behind these equations per se, but in the functional relationships that they

de�ne. In particular, to obtain a \next-state function," we rewrite Equation 22 by

solving for the accelerations to yield:

�q = M
�1(q)[� � C(q; _q) _q� G(q)]; (23)

where the existence of M�1(q) is always assured (Craig, 1986). Equation 23 ex-

presses the state-dependent relationship between torques and accelerations at each

moment in time: Given the state variables q(t) and _q(t), and given the torque � (t),

the acceleration �q(t) can be computed by substitution in Equation 23. We refer to

this computation as the forward dynamics of the arm.

28

Controller

q q,
.

τ*q
..

q
..

Arm

Figure 18: The forward and inverse mappings associated with arm dynamics.

An inverse mapping between torques and accelerations can be obtained by in-

terpreting Equation 22 in the proper manner. Given the state variables q(t) and

_q(t), and given the acceleration �q(t), substitution in Equation 22 yields the corre-

sponding torques. This (algebraic) computation is refered to as inverse dynamics.

It should be clear that inverse dynamics and forward dynamics are complemen-

tary computations: Substitution of � from Equation 22 into Equation 23 yields the

requisite identity mapping.

These relationships between torques, accelerations, and states are summarized

in Figure 18. It is useful to compare this �gure with the kinematic example shown in

Figure 12. In both the kinematic case and the dynamic case, the forward and inverse

mappings that must be learned are �xed functions of the instantaneous values of the

relevant variables. In the dynamic case, this is due to the fact that the structural

terms of the dynamical equations (the terms M , C, and G) are explicit functions

of state rather than time. The dynamic case can be thought of as a generalization

of the kinematic case in which additional contextual (state) variables are needed to

index the mappings that must be learned.12

Figure 18 is an instantiation of Figure 6, with the acceleration playing the role

of the \next-state." In general, for systems described by di�erential equations, it

is convenient to de�ne the notion of \next-state" in terms of the time derivative of

one or more of the state variables (e.g., accelerations in the case of arm dynamics).

This de�nition is entirely consistent with the development in preceding sections;

indeed, if the di�erential equations in Equation 22 are simulated in discrete time on

a computer, then the numerical algorithm must compute the accelerations de�ned

by Equation 23 to convert the positions and velocities at the current time step into

the positions and velocities at the next time step.13

12This perspective is essentially that underlying the local optimization formulation of distal
learning.

13Because of the ampli�cation of noise in di�erentiated signals, however, most realistic implemen-

tations of forward dynamical models would utilize positions and velocities rather than accelerations.
In such cases the numerical integration of Equation 23 would be incorporated as part of the forward

model.

29

Learning a dynamic forward model

A forward model of arm dynamics is a network that learns a prediction �̂q of the

acceleration �q, given the position q, the velocity _q, and the torque � . The appro-

priate teaching signal for such a network is the actual acceleration �q, yielding the

following cost functional:

L =
1

2
Ef(�q� �̂q)T (�q� �̂q)g: (24)

The prediction �̂q is a function of the position, the velocity, the torque and the

weights:

�̂q = f̂(q; _q; � ;w):

For an appropriate ensemble of control trajectories, this cost functional is minimized

when a set of weights is found such that f̂(�;w) best approximates the forward

dynamical function given by Equation 23.

An important di�erence between kinematic problems and dynamic problems

is that it is generally infeasible to produce arbitrary random control signals in dy-

namical environments, because of considerations of stability. For example, if � (t)

in Equation 22 is allowed to be a stationary white-noise stochastic process, then

the variance of q(t) approaches in�nity (much like a random walk). This yields

data that is of little use for learning a model. We have used two closely related

approaches to overcome this problem. The �rst approach is to produce random

equilibrium positions for the arm rather than random torques. That is, we de�ne a

new control signal u(t) such that the augmented arm dynamics are given by:

M(q)�q+ C(q; _q) _q+ G(q) = kv(_q� _u) + kp(q� u); (25)

for �xed constants kp and kv. The random control signal u in this equation acts

as a \virtual" equilibrium position for the arm (Hogan, 1985) and the augmented

dynamics can be used to generate training data for learning the forward model. The

second approach also utilizes Equation 25 and di�ers from the �rst approach only

in the choice of the control signal u(t). Rather than using random controls, the

target trajectories themselves are used as controls (that is, the trajectories utilized

in the second phase of learning are also used to train the forward model). This

approach is equivalent to using a simple �xed-gain proportional-derivative (PD)

feedback controller to stabilize the system along a set of reference trajectories and

thereby generate training data.14 Such use of an auxiliary feedback controller is

similar to its use in the feedback-error learning (Kawato, et al., 1987) and direct

inverse modeling (Atkeson & Reinkensmeyer, 1988; Miller, 1987) approaches. As is

discussed below, the second approach has the advantage that it does not require the

forward model to be learned in a separate phase.

14A PD controller is a device whose output is a weighted sum of position errors and velocity

errors. The position errors and the velocity errors are multiplied by �xed numbers (gains) before

being summed.

30

++++

Feedforward
 Controller

Forward
 Model

++++

++++

++++

Feedback
Controller

Arm
ττff

τfb

Figure 19: The composite control system.

Composite control system

The composite system for controlling the arm is shown in Figure 19. The control

signal in this diagram is the torque � , which is the sum of two components:

� = � ff + � fb;

where � ff is a feedforward torque and � fb is the (optional) feedback torque produced

by the auxiliary feedback controller. The feedforward controller is the learning con-

troller that converges toward a model of the inverse dynamics of the arm. In the early

phases of learning, the feedforward controller produces small random torques, thus

the major source of control is provided by the error-correcting feedback controller.15

When the feedforward controller begins to be learned it produces torques that al-

low the system to follow desired trajectories with smaller error, thus the role of

the feedback controller is diminished. Indeed, in the limit where the feedforward

controller converges to a perfect inverse model, the feedforward torque causes the

system to follow a desired trajectory without error and the feedback controller is

15As is discussed below, this statement is not entirely accurate. The learning algorithm itself

provides a form of error-correcting feedback control.

31

therefore silent (assuming no disturbances). Thus the system shifts automatically

from feedback-dominated control to feedforward-dominated control over the course

of learning (see also Atkeson & Reinkensmeyer, 1988; Kawato, et al., 1987; Miller,

1988).

There are two error signals utilized in learning inverse dynamics: The prediction

error �q� �̂q and the performance error �q�� �q.16 The prediction error is used to train

the forward model as discussed in the previous section. Once the forward model is

at least partially learned, the performance error can be used in training the inverse

model. The error is propagated backward through the forward model and down into

the feedforward controller where the weights are changed. This process minimizes

the distal cost functional:

J =
1

2
Ef(�q�� �q)T (�q� � �q)g: (26)

Simulations

The arm was modeled using rigid body dynamics assuming the mass to be uniformly

distributed along the links. The links were modeled as thin cylinders. Details on

the physical constants are provided in Appendix C. The simulation of the forward

dynamics of the arm was carried out using a fourth-order Runge-Kutta algorithm

with a sampling frequency of 200 Hz. The control signals provided by the networks

were sampled at 100 Hz.

Standard feedforward connectionist networks were used in all of the simula-

tions. There were two feedforward networks in each simulation|a controller and

a forward model|with overall connectivity as shown in Figure 18 (with the box

labelled \Arm" being replaced by a forward model). Both the controller and the

forward model were feedforward networks with a single layer of logistic hidden units.

In all of the simulations, the state variables, torques, and accelerations were repre-

sented directly as real-valued activations in the network. Details of the networks

used in the simulations are provided in Appendix B.

In all but the �nal simulation reported below, the learning of the forward model

and the learning of an inverse model were carried out in separate phases. The

forward model was learned in an initial phase by using a random process to drive

the augmented dynamics given in Equation 25. The random process was a white

noise position signal chosen uniformly within the workspace shown in Figure 20. The

learning of the forwardmodel was terminated when the �ltered RMS prediction error

reached 0:75 rad=s2.

16As noted above, it is also possible to include the numerical integration of �̂q as part of the
forward model and learn a mapping whose output is the predicted next-state (q̂[n]; _̂q[n]). This

approach may be preferred for systems in which di�erentiation of noisy signals is a concern.

32

Figure 20: The workspace (the grey region) and four target paths. The trajectories

move from left to right along the paths shown.

trial 0 trial 30

(a) (b)

Figure 21: Performance on one of the four learned trajectories. (a) Before learning.

(b) After 30 learning trials.

Learning with an auxiliary feedback controller

After learning the forward model, the system learned to control the arm along

the four paths shown in Figure 20. The target trajectories were minimum jerk

trajectories of one second duration each. An auxiliary proportional-derivative (PD)

feedback controller was used, with position gains of 1:0 N �m=rad and velocity gains

of 0:2 N � m � s=rad. Figure 21 shows the performance on a particular trajectory

before learning (with the PD controller alone) and during the 30th learning trial.

The corresponding waveforms are shown in Figure 22 and Figure 23. The middle

graphs in these �gures show the feedback torques (dashed lines) and the feedforward

torques (solid lines). As can be seen, in the early phases of learning the torques are

33

0.0

1.0

2.0

3.0

4.0

tangential velocity

1.0
0.8

0.6
0.4

0.2
0.0

tim
e

-1.0

0.0

1.0

2.0

1.0
0.8

0.6
0.4

0.2
0.0

tim
e

angle 1

1.9

2.0

2.1

2.2

2.3

2.4

2.5

1.0
0.8

0.6
0.4

0.2
0.0

tim
e

angle 2

1

1.0
0.8

0.6
0.4

0.2
0.0

tim
e

-2.0

-1.0

0.0

1.0

torque

1.0
0.8

0.6
0.4

0.2
0.0

tim
e

2torque

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

F
ig
u
re

2
2
:
B
efo

re
lea

rn
in
g
.
In

th
e
to
p
g
ra
p
h
s,
th
e
d
o
tted

lin
e
is
th
e
referen

ce
a
n
g
le

a
n
d
th
e
so
lid

lin
e
is
th
e
a
ctu

a
l
a
n
g
le.

In
th
e
m
id
d
le

g
ra
p
h
s,
th
e
d
o
tted

lin
e
is
th
e

feed
b
a
ck

to
rq
u
e
a
n
d
th
e
so
lid

lin
e
is
th
e
feed

fo
rw
a
rd

to
rq
u
e.

3
4

1.0
0.8

0.6
0.4

0.2
0.0

tim
e

angle 1

1.0
0.8

0.6
0.4

0.2
0.0

tim
e

angle 2

1

1.0
0.8

0.6
0.4

0.2
0.0

tim
e

torque

1.0
0.8

0.6
0.4

0.2
0.0

tim
e

2torque

-1.0

0.0

1.0

2.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

1.9

2.0

2.1

2.2

2.3

2.4

0.0

0.1

0.2

0.3

0.4

tangential velocity

1.0
0.8

0.6
0.4

0.2
0.0

tim
e

0.0

1.0

2.0

3.0

F
ig
u
re

2
3
:
A
fter

lea
rn
in
g
.
In

th
e
to
p
g
ra
p
h
s,
th
e
d
o
tted

lin
e
is
th
e
referen

ce
a
n
g
le

a
n
d
th
e
so
lid

lin
e
is
th
e
a
ctu

a
l
a
n
g
le.

In
th
e
m
id
d
le

g
ra
p
h
s,
th
e
d
o
tted

lin
e
is
th
e

feed
b
a
ck

to
rq
u
e
a
n
d
th
e
so
lid

lin
e
is
th
e
feed

fo
rw
a
rd

to
rq
u
e.

3
5

generated principally by the feedback controller and in later phases the torques are

generated principally by the feedforward controller.

Learning without an auxiliary feedback controller

An interesting consequence of the goal-directed nature of the forward modeling

approach is that it is possible to learn an inverse dynamic model without using an

auxiliary feedback controller. To see why this is the case, �rst note that minimum

jerk reference trajectories (and other \smooth" reference trajectories) change slowly

in time. This implies that successive time steps are essentially repeated learning

trials on the same input vector; thus, the controller converges rapidly to a \solution"

for a local region of state space. As the trajectory evolves, the solution tracks the

input; thus, the controller produces reasonably good torques prior to any \learning."

Put another way, the distal learning approach is itself a form of error-correcting

feedback control in the parameter space of the controller. Such error correction

must eventually give way to convergence of the weights if the system is to learn an

inverse model; nonetheless, it is a useful feature of the algorithm that it tends to

stabilize the arm during learning.

This behavior is demonstrated by the simulations shown in Figure 24. The

�gure shows performance on the �rst learning trial as a function of the learning

rate. The results demonstrate that changing the learning rate essentially changes

the gain of the error-correcting behavior of the algorithm. When the learning rate

is set to 0.5, the system produces nearly perfect performance on the �rst learning

trial. This feature of the algorithm makes it important to clarify the meaning of

the learning curves obtained with the distal learning approach. Figure 25 shows

two such learning curves. The lower curve is the RMS error that is obtained with

a learning rate of 0.1. The upper curve is the RMS error that is obtained when

the learning rate is temporarily set to zero after each learning trial. Setting the

learning rate to zero allows the e�ects of learning to be evaluated separately from

the error-correcting behavior. The curves clearly reveal that on the early trials the

main contributor to performance is error correction rather than learning.

Combining forward dynamics and forward kinematics

Combining the forward dynamic models of this section with the forward kinematic

models of the preceding section makes it possible to train the controller using Carte-

sian target trajectories. Given that the dynamic model and the kinematic model

can be learned in parallel, there is essentially no performance decrement associated

with using the combined system. In our simulations, we �nd that learning times

increase by approximately eight percent when using Cartesian targets rather than

joint angle targets.

36

mu = 0.0 mu = 0.01

mu = 0.02 mu = 0.05

mu = 0.1 mu = 0.5

Figure 24: Performance on the �rst learning trial as a function of the learning rate.

37

50403020100

0

10

20

30

40

mu = 0.1
mu = 0.0

trial

R
M

S
 e

rr
o

r
(

2
ra

d
/s

)

Figure 25: RMS error for zero and non-zero learning rates.

Learning the forward model and the controller simultaneously

The distal learning approach involves using a forward model to train the controller;

thus, learning of the forward model must precede the learning of the controller. It is

not necessary, however, to learn the forward model over the entire state space before

learning the controller|a local forward model is generally su�cient. Moreover, as

we have discussed, the distal learning approach does not require an exact forward

model|approximate forward models often su�ce. These two facts, in conjunction

with the use of smooth reference trajectories, imply that it should be possible to

learn the forward model and the controller simultaneously. An auxiliary feedback

controller is needed to stabilize the system initially; however, once the forward model

begins to be learned, the learning algorithm itself tends to stabilize the system.

Moreover, as the controller begins to be learned, the errors decrease and the e�ects

of the feedback controller diminish automatically. Thus the system bootstraps itself

toward an inverse model.

The simulation shown in Figure 26 demonstrates the feasibility of this approach.

38

trial 0 trial 30

(a) (b)

Figure 26: Learning the forward model and the controller simultaneously. (a) Per-

formance before learning on two of the target trajectories. (b) Performance after 30

learning trials.

Using the same architecture as in previous experiments the system learned four

target trajectories starting with small random weights in both the controller and

the forward model. On each time step two passes of the backpropagation algorithm

were required|one pass with the prediction error �q � �̂q to change the weights

of the forward model, and a second pass with the performance error �q� � �q to

change the weights of the controller. An auxiliary proportional-derivative (PD)

feedback controller was used, with position gains of 1:0 N �m=rad and velocity gains

of 0:2 N �m � s=rad. As shown in the �gure, the system converges to an acceptable

level of performance after 30 learning trials.

Although the simultaneous learning procedure requires more presentations of

the target trajectories to achieve a level of performance comparable to that of the

two-phase learning procedure, the simultaneous procedure is in fact more e�cient

than two-phase learning because it dispenses with the initial phase of learning the

forward model. This advantage must be weighed against certain disadvantages;

in particular, the possibility of instability is enhanced because of the error in the

gradients obtained from the partially-learned forward model. In practice we �nd

that it is often necessary to use smaller step sizes in the simultaneous learning

approach than in the two-phase learning approach. Preliminary experiments have

also shown that is worthwhile to choose specialized representations that enhance the

speed with which the forward model converges. This can be done separately for the

state variable input and the torque input.

39

Dynamic environments: Simpli�ed models

In the previous section we demonstrated how the temporal component of the dis-

tal supervised learning problem can be addressed by knowledge of a set of state

variables for the environment. Assuming prior knowledge of a set of state variables

is tantamount to assuming that the learner has prior knowledge of the maximum

delay between the time at which an action is issued and the time at which an e�ect

is observed in the sensation vector. In the current section we present preliminary

results that aim to broaden the scope of the distal learning approach to address

problems in which the maximum delay is not known (see also Werbos, 1987).

A simple example of such a problem is one in which a robot arm is required

to be in a certain con�guration at time T , where T is unknown, and where the

trajectory in the open interval from 0 to T is unconstrained.17 One approach to

solving such problems is to learn a one-step forward model of the arm dynamics and

then to use backpropagation-in-time in a recurrent network that includes the forward

model and a controller (Jordan, 1990; Kawato, 1990).18 In many problems involving

delayed temporal consequences, however, it is neither feasible nor desirable to learn

a dynamic forward model of the environment, either because the environment is

too complex or because solving the task at hand does not require knowledge of the

evolution of all of the state variables. Consider for example the problem of predicting

the height of a splash of water when stones of varying size are dropped into a pond.

It is unlikely that a useful one-step dynamic model could be learned for the
uid

dynamics of the pond. Moreover, if the control problem is to produce splashes

of particular desired heights, it may not be necessary to model
uid dynamics in

detail. A simple forward model that predicts an integrated quantity|splash height

as a function of the size of the stone|may su�ce.

Jordan and Jacobs (1990) illustrated this approach by using distal learning to

solve the problem of learning to balance an inverted pendulum on a moving cart.

This problem is generally posed as an avoidance control problem in which the only

corrective information provided by the environment is a signal to indicate that failure

has occured (Barto, Sutton, & Anderson, 1983). The delay between actions (forces

applied to the cart) and the failure signal is unknown and indeed can be arbitrarily

large. In the spirit of the foregoing discussion, Jordan and Jacobs also assumed that

it is undesirable to model the dynamics of the cart-pole system; thus, the controller

cannot be learned by using backpropagation-in-time in a recurrent network that

includes a one-step dynamic model of the plant.

17A unique trajectory may be speci�ed by enforcing additional constraints on the temporal evo-

lution of the actions; however, the only explicit target information is assumed to be that provided

at the �nal time step.
18In Kawato's work, backpropagation-in-time is implemented in a spatially-unrolled network and

the gradients are used to change activations rather than weights; however, the idea of using a one-

step forward dynamic model is the same. See also Nguyen & Widrow (1989) for an application to

a kinematic problem.

40

The approach adopted by Jordan and Jacobs involves learning a forward model

whose output is an integrated quantity|an estimate of the inverse of the time until

failure. This estimate is learned using temporal di�erence techniques (Sutton, 1988).

At time steps on which failure occurs, the target value for the forwardmodel is unity:

e(t) = 1� ẑ(t);

where ẑ(t) is the output of the forward model, and e(t) is the error term used to

change the weights. On all other time steps, the following temporal di�erence error

term is used:

e(t) =
1

1 + ẑ�1(t + 1)
� ẑ(t);

which yields an increasing arithmetic series along any trajectory that leads to failure.

Once learned, the output of the forward model is used to provide a gradient for

learning the controller. In particular, because the desired outcome of balancing the

pole can be described as the goal of maximizing the time until failure, the algorithm

learns the controller by using zero minus the output of the forward model as the

distal error signal.19

The forward model used by Jordan and Jacobs di�ers in an important way

from the other forward models described in this paper. Because the time-until-

failure depends on future actions of the controller, the mapping that the forward

model must learn depends not only on �xed properties of the environment but also

on the controller. When the controller is changed by the learning algorithm, the

mapping that the forward model must learn also changes. Thus the forward model

must be updated continuously during the learning of the controller. In general, for

problems in which the forward model learns to estimate an integral of the closed-

loop dynamics, the learning of the forward model and the controller must proceed

in parallel.

Temporal di�erence techniques provide the distal learning approach with en-

hanced functionality. They make it possible to learn to make long-term predictions

and thereby adjust controllers on the basis on quantities that are distal in time.

They can also be used to learn multi-step forward models. In conjunction with

backpropagation-in-time, they provide a
exible set of techniques for learning ac-

tions on the basis of temporally-extended consequences.

Discussion

In this paper we have argued that the supervised learning paradigm is broader than

is commonly assumed. The distal supervised learning framework extends super-

vised learning to problems in which desired values are available only for the distal

19This technique can be considered as an example of using supervised learning algorithms to solve

a reinforcement learning problem (see below).

41

consequences of a learner's actions and not for the actions themselves. This is a sig-

ni�cant weakening of the classical notion of the \teacher" in the supervised learning

paradigm. In this section we provide further discussion of the class of problems

that can be treated within the distal supervised learning framework. We discuss

possible sources of training data and we contrast distal supervised learning with

reinforcement learning.

How is training data obtained?

To provide support for our argument that distal supervised learning is more realistic

than classical supervised learning it is necessary to consider possible sources of

training data for distal supervised learning. We discuss two such sources, which we

refer to as imitation and envisioning.

One of the most common ways for humans to acquire skills is through imitation.

Skills such as dance or athletics are often learned by observing another person

performing the skill and attempting to replicate their behavior. Although in some

cases a teacher may be available to suggest particular patterns of limb motion, such

direct instruction does not appear to be a necessary component of skill acquisition.

A case in point is speech acquisition|children acquire speech by hearing speech

sounds, not by receiving instruction on how to move their articulators.

Our conception of a distal supervised learning problem involves a set of (inten-

tion, desired outcome) training pairs. Learning by imitation clearly makes desired

outcomes available to the learner. With regard to intentions, there are three possi-

bilities. First, the learner may know or be able to infer the intentions of the person

serving as a model. Alternatively, an idiosyncratic internal encoding of intentions is

viable as long as the encoding is consistent. For example, a child acquiring speech

may have an intention to drink, may observe another person obtaining water by

uttering the form \water," and may utilize the acoustic representation of \water"

as a distal target for learning the articulatory movements for expressing a desire to

drink, even though the other person uses the water to douse a �re. Finally, when the

learner is acquiring an inverse model, as in the simulations reported in this paper,

the intention is obviously available because it is the same as desired outcome.

Our conception of distal supervised learning problem as a set of training pairs is

of course an abstraction that must be elaborated when dealing with complex tasks.

In a complex task such as dance, it is presumably not easy to determine the choice

of sensory data to be used as distal targets for the learning procedure. Indeed, the

learner may alter the choice of targets once he or she has achieved a modicum of

skill. The learner may also need to decompose the task into simpler tasks and to set

intermediate goals. We suspect that the role of external \teachers" is to help with

these representational issues rather than to provide proximal targets directly to the

learner.

Another source of data for the distal supervised learning paradigm is a process

that we refer to as \envisioning." Envisioning is a general process of converting

42

abstract goals into their corresponding sensory realization, without regard to the

actions needed to achieve the goals. Envisioning involves deciding what it would

\look like" or \feel like" to perform some task. This process presumably involves

general deductive and inductive reasoning abilities as well as experience with similar

tasks. The point that we want to emphasize is that envisioning need not refer to

the actions that are needed to actually carry out a task; that is the problem solved

by the distal learning procedure.

Comparisons with reinforcement learning

An alternative approach to solving the class of problems that we have discussed in

this paper is to use reinforcement learning algorithms (Barto, 1989; Sutton, 1984).

Reinforcement learning algorithms are based on the assumption that the environ-

ment provides an evaluation of the actions produced by the learner. Because the

evaluation can be an arbitrary function, the approach is in principle applicable to

the general problem of learning on the basis of distal signals.

Reinforcement learning algorithms work by updating the probabilities of emit-

ting particular actions. The updating procedure is based on the evaluations received

from the environment. If the evaluation of an action is favorable then the probabil-

ity associated with that action is increased and the probabilities associated with all

other actions are decreased. Conversely, if the evaluation is unfavorable, then the

probability of the given action is decreased and the probabilities associated with all

other actions are increased. These characteristic features of reinforcement learning

algorithms di�er in important ways from the corresponding features of supervised

learning algorithms. Supervised learning algorithms are based on the existence of a

signed error vector rather than an evaluation. The signed error vector is generally,

although not always, obtained by comparing the actual output vector to a target

vector. If the signed error vector is small, corresponding to a favorable evaluation,

the algorithm initiates no changes. If the signed error vector is large, corresponding

to an unfavorable evaluation, the algorithm corrects the current action in favor of a

particular alternative action. Supervised learning algorithms do not simply increase

the probabilities of all alternative actions; rather, they choose particular alternatives

based on the directionality of the signed error vector.20

It is important to distinguish between learning paradigms and learning algo-

rithms. Because the same learning algorithm can often be utilized in a variety of

learning paradigms, a failure to distinguish between paradigms and algorithms can

lead to misunderstanding. This is particularly true of reinforcement learning tasks

and supervised learning tasks because of the close relationships between evaluative

signals and signed error vectors. A signed error vector can always be converted into

an evaluative signal (any bounded monotonic function of the norm of the signed

20As pointed out by Barto, Sutton & Anderson (1983), this distinction between reinforcement

learning and supervised learning is signi�cant only if the learner has a repertoire of more than two

actions.

43

error vector su�ces); thus, reinforcement learning algorithms can always be used

for supervised learning problems. Conversely, an evaluative signal can always be

converted into a signed error vector (using the machinery that we have discussed;

see also Munro, 1987); thus, supervised learning algorithms can always be used for

reinforcement learning problems. The de�nition of a learning paradigm, however,

has more to do with the manner in which a problem is naturally posed than with

the algorithm used to solve the problem. In the case of the basketball player, for

example, assuming that the environment provides directional information such as

\too far to the left," \too long," or \too short," is very di�erent from assuming

that the environment provides evaluative information of the form \good," \better,"

or \best". Furthermore, learning algorithms di�er in algorithmic complexity when

applied across paradigms: Using a reinforcement learning algorithm to solve a su-

pervised learning problem is likely to be ine�cient because such algorithms do not

take advantage of directional information. Conversely, using supervised learning al-

gorithms to solve reinforcement learning problems is likely to be ine�cient because

of the extra machinery that is required to induce a signed error vector.

In summary, although it has been suggested that the di�erence between rein-

forcement learning and supervised learning is the latter's reliance on a \teacher," we

feel that this argument is mistaken. The distinction between the supervised learning

paradigm and the reinforcement learning paradigm lies in the interpretation of envi-

ronmental feedback as an error signal or as an evaluative signal, not the coordinate

system in which such signals are provided. Many problems involving distal credit

assignment may be better conceived of as supervised learning problems rather than

reinforcement learning problems if the distal feedback signal can be interpreted as

a performance error.

Conclusions

There are a number of di�culties with the classical distinctions between \unsuper-

vised," \reinforcement," and \supervised" learning. Supervised learning is generally

said to be dependent on a \teacher" to provide target values for the output units

of a network. This is viewed as a limitation because in many domains there is no

such teacher. Nevertheless, the environment often does provide sensory information

about the consequences of an action which can be employed in making internal mod-

i�cations just as if a teacher had provided the information to the learner directly.

The idea is that the learner �rst acquires an internal model that allows prediction

of the consequences of actions. The internal model can be used as a mechanism

for transforming distal sensory information about the consequences of actions into

proximal information for making internal modi�cations. This two-phase procedure

extends the scope of the supervised learning paradigm to include a broad range of

problems in which actions are transformed by an unknown dynamical process before

being compared to desired outcomes.

44

We �rst illustrated this approach in the case of learning an inverse model of

a simple \static" environment. We showed that our method of utilizing a forward

model of the environment has a number of important advantages over the alternative

method of building the inverse model directly. These advantages are especially

apparent in cases where there is no unique inverse model. We also showed that this

idea can be extended usefully to the case of a dynamic environment. In this case,

we simply elaborate both the forward model and the learner (i.e., controller) so they

take into account the current state of the environment. Finally, we showed how this

approach can be combined with temporal di�erence techniques to build a system

capable of learning from sensory feedback that is subject to an unknown delay.

We also suggested that comparative work in the study of learning can be facili-

tated by making a distinction between learning algorithms and learning paradigms.

A variety of learning algorithms can often be applied to a particular instance of a

learning paradigm; thus, it is important to characterize not only the paradigmatic

aspects of any given learning problem, such as the nature of the interaction between

the learner and the environment and the nature of the quantities to be optimized,

but also the tradeo�s in algorithmic complexity that arise when di�erent classes

of learning algorithms are applied to the problem. Further research is needed to

delineate the natural classes at the levels of paradigms and algorithms and to clarify

the relationships between levels. We believe that such research will begin to pro-

vide a theoretical basis for making distinctions between candidate hypotheses in the

empirical study of human learning.

References

Atkeson, C. G., & Reinkensmeyer, D. J. (1988). Using associative content-address-

able memories to control robots. IEEE Conference on Decision and Control.

San Francisco, CA.

Barto, A. G. (1989). From chemotaxis to cooperativity: Abstract exercises in neu-

ronal learning strategies. In R. M. Durbin, R. C. Maill, & G. J. Mitchison

(Eds.), The computing neurone. Reading, MA: Addison-Wesley Publishers.

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive ele-

ments that can solve di�cult learning control problems. IEEE Transactions on

Systems, Man, and Cybernetics, SMC-13, 834-846.

Becker, S. & Hinton, G. E. (1989). Spatial coherence as an internal teacher for a

neural network. (Tech. Rep. CRG-TR-89-7). Toronto: University of Toronto.

Carlson, A. B. (1986). Communication Systems. New York: McGraw-Hill.

Craig, J. J. (1986). Introduction to Robotics. Reading, MA: Addison-Wesley Pub-

lishers.

45

Gelfand, I. M. & Fomin, S. V. (1963). Calculus of variations. Englewood Cli�s, N.

J.: Prentice-Hall.

Goodwin, G. C. & Sin, K. S. (1984). Adaptive �ltering prediction and control.

Englewood Cli�s, NJ: Prentice-Hall.

Grossberg, S. (1987). Competitive learning: From interactive activation to adaptive

resonance. Cognitive Science, 11, 23-63.

Hinton, G. E. & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann

machines. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed

processing: Volume 1, 282-317. Cambridge, MA: MIT Press.

Hogan, N. (1984). An organising principle for a class of voluntary movements.

Journal of Neuroscience, 4, 2745-2754.

Jordan, M. I. (1983). Mental practice. Unpublished dissertation proposal, Center

for Human Information Processing, University of California, San Diego.

Jordan, M. I. (1986). Serial order: A parallel, distributed processing approach.

(Technical Report 8604). La Jolla, CA: University of California, San Diego.

Jordan, M. I. (1988). Supervised learning and systems with excess degress of free-

dom. (COINS Tech. Rep. 88-27). Amherst, MA: University of Massachusetts,

Computer and Information Sciences.

Jordan, M. I., & Rosenbaum, D. A. (1989). Action. In M. I. Posner (Ed.), Founda-

tions of Cognitive Science. Cambridge, MA: MIT Press.

Jordan, M.I. (1990). Motor learning and the degrees of freedom problem. In M.

Jeannerod (Ed.), Attention and Performance, XIII. Hillsdale, NJ: Erlbaum.

Jordan, M. I., & Jacobs, R. A. (1990). Learning to control an unstable system with

forward modeling. In D. Touretzky (Ed.), Advances in Neural Information

Processing Systems 2. San Mateo, CA: Morgan Kaufmann.

Kawato, M. (1990). Computational schemes and neural network models for forma-

tion and control of multijoint arm trajectory. In W. T. Miller, III, R. S. Sutton,

& P. J. Werbos (Eds.), Neural Networks for Control. Cambridge: MIT Press.

Kawato, M., Furukawa, K., & Suzuki, R. (1987). A hierarchical neural-network

model for control and learning of voluntary movement. Biological Cybernetics,

57, 169-185.

Kirk, D. E. (1970). Optimal control theory. Englewood Cli�s, NJ: Prentice-Hall.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.

Biological Cybernetics, 43, 56-69.

46

Kuperstein, M. (1988). Neural model of adaptive hand-eye coordination for single

postures. Science, 239, 1308-1311.

LeCun, Y. (1985). A learning scheme for asymmetric threshold networks. Proceed-

ings of Cognitiva 85. Paris, France.

LeCun, Y. (1987). Mod�eles connexionnistes de l'apprentissage. Unpublished doc-

toral dissertation, Universit�e de Paris, VI.

Linsker, R. (1988). Self-organization in a perceptual network. Computer, 21, 105-

117.

Ljung, L. & S�oderstr�om, T. (1986). Theory and practice of recursive identi�cation.

Cambridge: MIT Press.

Miller, W. T. (1987). Sensor-based control of robotic manipulators using a general

learning algorithm. IEEE Journal of Robotics and Automation, 3, 157-165.

Mozer, M. C. & Bachrach, J. (1990). Discovering the structure of a reactive environ-

ment by exploration. In D. Touretzky (Ed.), Advances in Neural Information

Processing Systems 2. San Mateo, CA: Morgan Kaufmann.

Munro, P. (1987). A dual back-propagation scheme for scalar reward learning.

Proceedings of the Ninth Annual Conference of the Cognitive Science Society.

Hillsdale, NJ: Erlbaum.

Narendra, K. S. & Parthasarathy, K. (1990). Identi�cation and control of dynamical

systems using neural networks. IEEE Transactions on Neural Networks, 1, 4-

27.

Nguyen, D. & Widrow, B. (1989). The truck backer-upper: An example of self-

learning in neural networks. In: Proceedings of the International Joint Confer-

ence on Neural Networks, 2, 357-363. Piscataway, NJ: IEEE Press.

Parker, D. (1985). Learning-logic. (Tech. Rep. TR-47). Cambridge, MA: MIT

Sloan School of Management.

Robinson, A. J. & Fallside, F. (1989). Dynamic reinforcement driven error propa-

gation networks with application to game playing. Proceedings of Neural Infor-

mation Systems. American Institute of Physics.

Rosenblatt, F. (1962). Principles of neurodynamics. New York: Spartan.

Rumelhart, D. E. (1986). Learning sensorimotor programs in parallel distributed

processing systems. US-Japan Joint Seminar on Competition and Cooperation

in Neural Nets, II. Unpublished presentation.

47

Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning internal rep-

resentations by error propagation. In D. E. Rumelhart & J. L. McClelland

(Eds.), Parallel distributed processing: Volume 1, 318-363. Cambridge, MA:

MIT Press.

Rumelhart, D. E., Smolensky, P., McClelland, J. L. & Hinton, G. E. (1986). Sche-

mata and sequential thought processes in PDP models. In D. E. Rumelhart

& J. L. McClelland (Eds.), Parallel distributed processing: Volume 2, 7-57.

Cambridge, MA: MIT Press.

Rumelhart, D. E. & Zipser, D. (1986). Feature discovery by competitive learning.

In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing:

Volume 1, 151-193. Cambridge, MA: MIT Press.

Schmidhuber, J. H. (1990). An on-line algorithm for dynamic reinforcement learning

and planning in reactive environments. In: Proceedings of the International

Joint Conference on Neural Networks, 2, 253-258. Piscataway, NJ: IEEE Press.

Sutton, R. S. (1984). Temporal credit assignment in reinforcement learning. (COINS

Tech. Rep. 84-02). Amherst, MA: University of Massachusetts, Computer and

Information Sciences.

Sutton, R. S. (1988). Learning to predict by the methods of temporal di�erences.

Machine Learning, 3, 9-44.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting

based on approximating dynamic programming. Proceedings of the Seventh

International Conference on Machine Learning.

Werbos, P. (1974). Beyond regression: New tools for prediction and analysis in the

behavioral sciences. Unpublished doctoral dissertation, Harvard University.

Werbos, P. (1987). Building and understanding adaptive systems: A statistical/nu-

merical approach to factory automation and brain research. IEEE Transactions

on Systems, Man, and Cybernetics, 17, 7-20.

Widrow, B. & Ho�, M. E. (1960). Adaptive switching circuits. Institute of Radio

Engineers, Western Electronic Show and Convention, Convention Record, Part

4, 96-104.

Widrow, B., & Stearns, S. D. (1985). Adaptive signal processing. Englewood Cli�s,

NJ: Prentice-Hall.

48

Appendix A

To obtain an expression for the gradient of Equation 16, we utilize a continuous-time

analog, derive a necessary condition, and then convert the result into discrete time.

To simplify the exposition we compute partial derivatives with respect to the actions

u instead of the weights w. The resulting equations are converted into gradients for

the weights by premultiplying by the transpose of the Jacobian matrix (@u=@w).

Let u(t) represent an action trajectory and let y(t) represent a sensation tra-

jectory. These trajectories are linked in the forward direction by the dynamical

equations:

_x = f(x;u)

and

y = g(x):

The action vector u is assumed to depend on the current state and the target

vector:

u = h(x;y�):

The functional to be minimized is given by the following integral:

J =
1

2

Z T

0

(y� � y)T(y� � y)dt;

which is the continuous-time analog of Equation 16 (we have suppressed the sub-

script � to simplify the notation).

Let �(t) and 	(t) represent vectors of time-varying Lagrange multipliers and

de�ne the Lagrangian:

L(t) =
1

2
(y� � y)T (y� � y) + [f(x;u)� _x]T�+ [h(x;y�)� u]T	:

The Lagrange multipliers have an interpretation as sensitivities of the cost with

respect to variations in _x and y, respectively. Because these sensitivities become

partial derivatives when the problem is converted to discrete time, we are interested

in solving for 	(t).

A necessary condition for an optimizing solution is that it satisfy the Euler-

Lagrange equations (Gelfand & Fomin, 1963):

@L

@x
�

d

dt

@L

@ _x
= 0

and
@L

@u
�

d

dt

@L

@ _u
= 0

at each moment in time. These equations are the equivalent in function space of

the familiar procedure of setting the partial derivatives equal to zero.

49

Substituting for L(t) and simplifying we obtain:

_� = �
@f

@x

T

��
@k

@x

T

	+
@g

@x

T

(y�� y)

and

	 =
@f

@u

T

�:

Using an Euler approximation, these equations can be written in discrete time

as recurrence relations:

�[n� 1] = �[n] + h
@f

@x

T

�[n] + h
@k

@x

T

	[n]� h
@g

@x

T

(y�[n]� y[n]) (27)

and

	[n] =
@f

@u

T

�[n]; (28)

where h is the sampling period of the discrete approximation. To utilize these recur-

rence relations in a discrete-time network, the sampling period h is absorbed in the

network approximations of the continuous-time mappings. The network approxima-

tion of f must also include an identity feedforward component to account for the

initial autoregressive term in Equation 27. Premultiplication of Equation 28 by the

transpose of the Jacobian matrix (@u=@w) then yields Equations 17, 18, and 19 in

the main text.

Appendix B

The networks used in all of the simulations were standard feedforward connectionist

networks (see Rumelhart, Hinton, & Williams, 1986).

Activation functions|The input units and the output units of all networks were

linear and the hidden units were logistic with asymptotes of �1 and 1.

Input and target values|In the kinematic arm simulations, the joint angles were

represented using the vector [cos(q1 �
�
2
); cos(q2); cos(q3)]

T . The Cartesian targets

were scaled to lie between �1 and 1 and fed directly into the network.

In the dynamic arm simulations, all variables|joint angles, angular velocities,

angular accelerations, and torques|were scaled and fed directly into the network.

The scaling factors were chosen such that the scaled variables ranged approximately

from �1 to 1.

Initial weights|Initial weights were chosen randomly from a uniform distribu-

tion on the interval [�0:5; 0:5].

Hidden units|A single layer of 50 hidden units was used in all networks. No

attempt was made to optimize the number of the hidden units or their connectivity.

Parameter values|A learning rate of 0.1 was used in all of the kinematic arm

simulations. The momentum was set to 0.5.

50

In the dynamic arm simulations, a learning rate of 0.1 was used in all cases,

except for the simulation shown in Figure 24 in which the learning rate was manip-

ulated explicitly. No momentum was used in the dynamic arm simulations.

Appendix C

The dynamic arm was modeled using rigid-body mechanics. The link lengths were

0:33 m for the proximal link and 0:32 m for the distal link. The masses of the links

were 2:52 kg and 1:3 kg.

The mass was assumed to be distributed uniformly along the links. The mo-

ments of inertia of the links about their centers of mass were therefore given by

Ii = mil
2

i =12, yielding 0:023 kg �m2 and 0:012 kg �m2 for the proximal and distal

links, respectively.

51

