
Machine Learning and Pattern Recognition
Principal Component Analysis

Course Lecturer:Amos J Storkey∗

Institute for Adaptive and Neural Computation
School of Informatics

University of Edinburgh
10 Crichton Street, Edinburgh UK

a.storkey@ed.ac.uk
Course page : http://www.inf.ed.ac.uk/teaching/courses/mlpr/

∗ Notes are edited versions of notes originally created by David Barber



Learning from Data 1 : c© David Barber 2001,2002,2003,2004 2

1 High Dimensional Data

Often in machine learning, the data is very high dimensional. In the case
of the hand-written digits, the data is 784 dimensional. Images are a
good example of high dimensional data, and a good place where some
of the basic motivations and assumptions about machine learning come
to light. For simplicity, consider the case of the handwritten digits in
which each pixel is binary – either 1 or 0. In this case, the total possible
number of images that could ever exist is 2784 ≈ 10236 – this is an ex-
tremely large number (very much larger than the number of atoms in the
universe). However, it is clear that only perhaps at most a hundred or
so examples of a digit 7 would be sufficient (to a human) to understand
how to recognise a 7. Indeed, the world of digits must therefore lie in
a highly constrained subspace of the 784 dimensions. It is certainly not
true that each dimension is independent of the other in the case of digits.
In other words, certain directions in the space will be more important
than others for describing digits. This is exactly the hope, in general, forA hook for machine learning
machine learning – that only a relatively small number of directions are
relevant for describing the true process underlying the data generating
mechanism. That is, any model of the data will have a relatively low
number of effective degrees of freedom. These lower dimensional inde-Features
pendent representations are often called ‘feature’ representations, since
it is these quintessential features which succinctly describe the data.

In general, it seems clear that the way dimensions depend on each otherLinear Dimension Reduction
is, for a general machine learning problem (and certainly the digits data)
very complex – certain dimensions being ‘on’ means that others are likely
to be ‘off’. This suggests that non-linear effects will, in general, be im-
portant for the efficient description of data. However, finding non-linear
representations of data is numerically difficult. Here, we concentrate on
linear dimension reduction in which a high dimensional datapoint x is
represented by y = Fx where the non-square matrix F has dimensions
dim(y) × dim(x), dim(y) < dim(x). The matrix F represents a linear
projection from the higher dimensional x space to the lower dimensional
y space. The form of this matrix determines what kind of linear projec-
tion is performed and, classically, there are several popular choices. The
two most popular correspond to Principal Components Analysis (PCA)
and Linear Discriminants. The first is an unsupervised and the latter a
supervised projection. We concentrate in this chapter on the more generic
PCA, leaving linear discriminants to a later chapter. Note that, again,
these methods do not describe any model from which we could generate
data and, are also non-probabilistic. However, probabilistic data gener-
ating versions do exist which are model based but are beyond the scope
of this course.

2 Principal Components Analysis

If data lies in a high dimensional space, we might hope that it lies close to
a hyperplane, as in Figure 1. We then can approximate each data point by
using the vectors that span the hyperplane alone. I will sometimes refer to
this small set of vectors as the “basis” set. Strictly speaking this is not a
basis for the whole space, rather is is a ‘basis’ which approximately spans
the space where the data is concentrated. Effectively, we are trying to
choose a more appropriate low dimensional co-ordinate system that will
approximately represent the data. Mathematically, we write

x ≈ c +
M∑

i=1

wibi (2.1)



Learning from Data 1 : c© David Barber 2001,2002,2003,2004 3

x

x

x

x

x
x

x

x

xx

Figure 1: In linear dimension reduction we hope that data that lies in a
high dimensional space lies close to a hyperplane that can be spanned by
a smaller number of vectors.

The vectors bi, i ∈ 1, . . . M are chosen to be orthonormal. That is
(bi)T bj = 0 for i 6= j, and (bi)T bi = 1. If the dimension of the data
space, dim(x) = N , our hope is that we can describe the data using only
a small number M of vectors. If we can do so, we can reduce greatly
the information needed to accurately describe the data. For example,
if the data lies in a 784 dimensional space, we might hope that we can
describe the data accurately using the above linear prescription with a
much smaller dimensional representation.

One can show (see end of chapter) that the optimal lower dimensional
representation (optimal in the sense of minimal squared reconstruction
error) is given by projecting the data onto the eigenvectors of covariance
matrix with the largest M eigenvalues. Algorithmically, this is :

1. Find the mean and covariance matrix of the data:

m =
1
P

P∑
µ=1

xµ, S =
1

P − 1

P∑
µ=1

(xµ −m)(xµ −m)T (2.2)

2. Find the eigenvectors e1, . . . , eM of the covariance matrix S which
have the largest eigenvalues. Form the matrix E = [e1, . . . , eM ]
which has the largest eigenvectors as its columns.

3. The lower dimensional representation of each data point xµ is given
by yµ = ET (xµ −m).

4. The approximate reconstruction of the original datapoint xµ is

xµ ≈ m + Eyµ (2.3)

5. The total squared error over all the training data made by the
approximation is (P −1)

∑N
j=M+1 λj where λj , j = M +1 . . . N are

the eigenvalues discarded in the projection.



Learning from Data 1 : c© David Barber 2001,2002,2003,2004 4

Figure 2: Projection of two dimensional data using one dimensional PCA.
Plotted are the original datapoints (crosses) and their reconstructions us-
ing 1 dimensional PCA (circles). The two lines represent the eigenvectors
and their lengths their corresponding eigenvalues.

One can view the PCA reconstructions (though there is usually little use
for these except to check that they give an adequate representation of
the original data) as orthogonal projections of the data onto the sub-
space spanned by the M largest eigenvectors of the covariance matrix,
see Figure 2.

% PCA demo

p = 40; % number of training points

dimx = 10; % dimension of the data

xdata = randn(dimx,p) + 2*ones(dimx,p);

A = rand(dimx); xdata = A*xdata; % generate some training data, xdata

% perform PCA :

m = mean(xdata,2); x = xdata - repmat(m,1,p); % subtract the mean

S = cov(x’); % covariance of the data

[Evec,Evalm] = eig(S); Eval = diag(Evalm); % find the e-vals and e-vecs

[evals,index]=sort(Eval); index=flipud(index); % find the largest e-vals

num_retain = 3; % number of eigenvectors to retain

Evec_retained = Evec(:,index(1:num_retain)); % get the largest e-vecs

x_lowerdim = Evec_retained’*x; % lower dimensional representation

x_reconstruction = Evec_retained*x_lowerdim + repmat(m,1,p); % reconstruction of x

subplot(1,2,1); imagesc(xdata); subplot(1,2,2);

imagesc(x_reconstruction);

Do the eigenvectors themselves explicitly have any meaning? No! TheyInterpreting the
Eigenvectors only act together to define the linear subspace onto which we project the

data – in themselves they have no meaning. We can see this since, in
principle, any basis which spans the same subspace as the eigenvectors of
the covariance matrix is equally valid as a representation of the data. For
example, any rotation of the basis vectors within the subspace spanned by
the first M eigenvectors would also have the same reconstruction error.
The only case when the subspace is uniquely defined is when we only
use one basis vector – that is, the principal component of the correlation
matrix alone.



Learning from Data 1 : c© David Barber 2001,2002,2003,2004 5

original original original original
mean

Figure 3: (left) Four of the 892 images. (right) The mean of the 892
images

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 10

5

eigenvalue number

ei
ge

nv
al

ue

Figure 4: The 100 largest eigevalues

How many dimensions should the linear subspace have? As derived (atThe “intrinsic” dimension of
data the end of the chapter), the reconstruction error is dominated by the

largest eigenvalues of the covariance matrix. If we plot the eigenvalue
spectrum (the set of eigenvalues ordered by decreasing value), we might
hope to see a few large values and many small values. Indeed, if the data
did lie very close to say a M dimensional linear manifold (hyperplane),
we would expect to see M large eigenvalues, and the rest to be very small.
This would give an indication of the number of degrees of freedom in the
data, or the intrinsic dimensionality. The directions corresponding to the
small eigenvalues are then interpreted as “noise”.

It might well be that a small reconstruction error can be made by usingWarning!
a small number of dimensions. However, it could be that precisely the
information required to perform a classification task lies in the “noise”
dimensions thrown away by the above procedure (though this will hope-
fully be rather rare). The purpose of linear discriminants is to try to deal
with this problem.

Whilst it is straightforward to perform the above linear dimension reduc-Non-linear Dimension
Reduction tion, bear in mind that we are presupposing that the data lies close to

a hyperplane. Is this really realistic? More generally, we would expect
data to lie on low dimensional curved manifolds. Also, data is often clus-
tered – examples of handwritten ‘4’s look similar to each other and form
a cluster, separate from the ‘8’s cluster. Nevertheless, since linear dimen-
sion reduction is so straightforward, this is one of the most powerful and
ubiquitous techniques used in dimensionality reduction.

2.1 Example : Reducing the dimension of digits

We have 892 examples of handwritten 5’s. Each is a 21*23 pixel image –
that is, each data point is a 483 dimensional vector. We plot 4 of these
images in Figure 3. The mean of the data is also plotted and is, in a
sense, an archetypal 5. The covariance matrix has eigenvalue spectrum
as plotted in Figure 4, where we plot only the 100 largest eigenvalues.
The reconstructions using different numbers of eigenvectors (10, 50 and
100) are plotted in Figure 5. Note how using only a small number of
eigenvectors, the reconstruction more closely resembles the mean image.



Learning from Data 1 : c© David Barber 2001,2002,2003,2004 6

original 10 e−vec reconstr. 50 e−vec reconstr. 100 e−vec reconstr.

Figure 5: The reconstruction using different linear subspace dimensions

2.2 Mega Dimensional Data

You might be wondering how it is possible to perform PCA on extremely
high dimensional data. For example, if we have 500 images each of 1000×
1000 = 106 pixels, the covariance matrix will be 106 × 106 dimensional –
well beyond the storage capacities of many computers.

One approach around this difficulty is to perform the calculations in a
lower dimensional space. Note that there can only be at most P non-zero
eigenvalues.

Using X to denote the (zero mean) data and E the matrix of eigenvectors
– this is non-square since there will be fewer eigenvalues than dimensions.
We write the eigenvalues as a diagonal matrix Λ. The eigenvalue require-
ment is

XXT E = EΛ (2.4)

XT XXT E = XT EΛ (2.5)

XT XẼ = ẼΛ (2.6)

where we defined Ẽ = XT E. The last line above represents the eigen-
vector equation for XT X. This is a matrix of dimensions P × P – in
the above example, a 500× 500 matrix as opposed to a 106 × 106 matrix
previously. We then can calculate the eigenvectors Ẽ and eigenvalues Λ
of this matrix more easily. Once found, we then use

E = XẼΛ−1 (2.7)

2.3 PCA is good because it is a poor compressor!

A moments thought throws up the following condundrum: It seems that
we wish to compress high dimensional data to a lower dimensional rep-
resentation. However, clearly, the optimal compressed representation
retains no structure since, if it did, further compression would still be
possible. The goal of feature extraction is not consistent with optimal
compression, since we wish to remove some redundancy, yet retain enough
structure in the lower dimensional representation such that any further
use of the data – making a machine which can generalise from the lower
dimensional representations for example – has a chance. Hence, perhaps
somewhat perversely, PCA is a reasonable feature extraction method be-
cause it is such a poor compressor!

2.4 Regression and PCA

We discussed using PCA to reduce the dimensionality of data, based on
the idea that data may lie close to a low dimensional hyperplane. Since a
line is a low dimensional hyperplane, one may wonder what the difference
is between using PCA to fit a line and a regression approach. The answer
is that the objective functions are different. Regression finds a line that
minimizes the vertical distance between a datapoint and the line; PCA
finds a line that minimizes the distance between a datapoint and the line
– see fig(6).



Learning from Data 1 : c© David Barber 2001,2002,2003,2004 7

65 70 75 80 85 90 95 100

5

10

15

20

25

30

ch
irp

s 
pe

r 
se

c

temperature (F)
70 75 80 85 90

8

10

12

14

16

18

20

22

24

26

ch
irp

s 
pe

r 
se

c

temperature (F)

Figure 6: Left: Straight line regression fit to the cricket data. Right:
PCA fit to the data. In regression we minimize the residuals – the fit
represents the shortest vertical distances. In PCA the fit minimizes the
orthogonal projections to the line.

3 Just for Interest ... Deriving the Optimal Linear Reconstruction

3.1 Optimal reconstruction weights

We wish to represent a data point x as a linear combination of a (small)
number of vectors. If the vectors c,bi, i ∈ 1, . . .M are already given, how
should we choose the coefficients wi?

If we want the square difference (in each component) between the ap-
proximation and x to be minimal, this gives an error measure

E(w) =

(
x− c−

∑

i

wibi

)2

(3.1)

Defining d ≡ x− c (3.2)

E(w) =

(
d−

∑

i

wibi

)2

(3.3)

= dT d− 2
∑

i

widT bi +
∑

i,j

wiwj(bi)T bj (3.4)

Since the vectors bi are orthonormal, and d is a constant vector, we can
form an equivalent error

Ẽ(w) =
∑

i

{−2widT bi + (wi)2
}

(3.5)

differentiating with respect to wj gives immediately that the optimal
weight coefficients are given by the projection of the vector d onto the
vectors bi.

wj = dT bj = (x− c)T bj = (bj)T (x− c) (3.6)

3.2 What is the optimal “basis” set?

Using equation (3.6) above, we have that the optimal reconstruction of a
vector xµ is

xµ ≈ c +
∑

j

bj(bj)T (xµ − c) (3.7)

For convenience, define M =
∑

j bj(bj)T . If we have a set of vectors,
xµ, µ ∈ 1, . . . P , then the reconstruction error over the whole data set is
(defining B =

{
bi, i ∈ 1, . . . M

}
)

E(c,B) =
∑

µ


xµ − c− (xµ − c)T

∑

j

bjbj




2

(3.8)



Learning from Data 1 : c© David Barber 2001,2002,2003,2004 8

Defining A = I−M, this is

E(c,B) =
P∑

µ=1

(A (xµ − c))2 = PcT AT Ac− 2cT AT A
∑

µ

xµ + const.

(3.9)
Differentiating with respect to ci to find the optimum vector c gives

c =
1
P

P∑
µ=1

xµ (3.10)

That is, the optimum fixed “origin” for the data is the mean of the data.
If we therefore zero mean the data (by subtracting the mean from each
data point), then c = 0. Consider we’ve done this, since this makes the
following analysis simpler. We still need to find the optimal vectors B.

A standard textbook approach to finding the optimal basis uses Lagrange
multipliers. Here we adopt a different approach, using more elementary
methods. It is clear that the eigenvectors of the correlation matrix S =

1
P−1

∑P
µ=1 xµ(xµ)T are spanned by the data xµ. Conversely, the data

are spanned by the eigenvectors of the correlation matrix. That is, each
data point can be represented as a linear combination of the eigenvectors
of S,

xµ =
N∑

k=1

γµ
k ek (3.11)

where ek, k ∈ 1, . . . N are unit length eigenvectors of S. (That is, Sek =
λkek, (ek)T el = 0 if k 6= l and 1 otherwise). Since the eigenvectors are
orthonormal, taking the scalar product of the above equation with ej

gives γµ
j = (ej)T xµ, so that any datapoint can be written

xµ =
∑

k

(ek)T xµek (3.12)

(indeed, this is true for any basis representation of a vector). Using the
basis vectors bi, the residual between xµ and its reconstruction using
these basis vectors is

rµ = xµ −
∑

j

(bj)T xµbj (3.13)

Using the above expansion of xµ in terms of the eigenvectors of S gives

rµ =
∑

k


(xµ)T ek −

∑

j

bj(bj)T ek(xµ)T


 ek (3.14)

=
∑

k

(xµ)T ek (ek −
∑

j

bj(bj)T ek)

︸ ︷︷ ︸
fk

(3.15)

The total reconstruction error for all the data points is then
∑

µ

(rµ)T rµ =
∑

µ,k,j

(ek)T xµ(fk)T (xµ)T ejf j (3.16)

= (P − 1)
∑

j,k

(ek)T Sej(fk)T f j =
∑

j

λj(f j)T f j (3.17)

Thus, if we can make the vectors f j zero for the largest eigenvalues λj

(remember that the eigenvalues of a positive definite matrix are positive),
we will make the smallest reconstruction error. If we make bj = ej for



Learning from Data 1 : c© David Barber 2001,2002,2003,2004 9

the largest eigenvalues λj , then f j = 0, and the contribution to the
reconstruction error from eigenvalue λj will be zero.

If we choose to use only M of the eigenvectors, this is equivalent to aResidual Error
basis expansion in which the first M vectors bj ,j = 1, . . . , M are set to
the M ‘largest’ eigenvectors and the rest bj ,j = M + 1, . . . , N are set
to zero. In this case f j = ej ,j = M + 1, . . . , N and the residual error is
(P − 1)

∑N
j=M+1 λj .


