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Answer QUESTION 1 and ONE other question.
Question 1 is COMPULSORY.

All questions carry equal weight.
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1. You MUST answer this question.

(a)
(b)

()

(d)

Define what is meant by categorical data. Define what is meant by ordinal
data.

Clearly write out how to compute the two major principal components of
data x!,x2,...,x". What scaling issues are there with principal component
analysis and what is a practical way of dealing with this is many circum-
stances?

Define the posterior distribution in terms of the prior distribution, the
marginal likelihood and the likelihood. How can the marginal likelihood
be used?

Write out the form of an exponential family distribution, stating what must
be known about the different parts. Write down the conjugate prior corre-
sponding to an exponential family likelihood of the form you wrote earlier.
Show that the resulting posterior for the case of a single data point is an-
alytically computable and takes the same form as the prior. Why is this
enough to allow a straightforward proof for the case of any number of data
points?

Define the KL divergence between two distributions. Give three important
properties of the KL divergence. How does a variational approach use the
KL divergence to approximate the posterior? Show how the variational
method provides a lower bound to the likelihood.
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2. You should either answer this question or question 3.

(a) Describe the form of a Gaussian process model for regression. Why is it
harder to use Gaussian processes for classification? Give one approach for
overcoming this difficulty.

(b) If a Gaussian process model for a function f corresponds to a finite feature
space then after a sufficiently large number of data points, some of the
eigenvalues of the covariance matrix will be zero. We investigate this here.

Consider using a linear model f = w’¢(x) and a finite feature model with
M features ¢ = (¢1(x),...,¢m(x)). Show that using a N(0,I) Gaussian
prior on the parameter vector w, the resulting Gaussian process has a co-
variance with at least N — M zero values, where N is the number of data
points. To do this you will want to collect together the values of f for all the
data points into the vector f, and the features into matrix ® (you should
describe how this is done), resulting in equation

f=w'®

You will want to compute the mean and covariance of f and use the fact
that a matrix C = ®®7 where ® is N by M, and M < N will have at least
N — M zero eigenvalues.

(¢) What is Automatic relevance determination? Describe its application to
Gaussian processes.

(d) How would you interpret a covariance function of the form:

K(e,y) = oxp <_2l_<—>)

for one-dimensional real-valued z, y?

(e) Discuss the multi-modality of the marginal likelihood (of the length scales)
for Gaussian process regression with a squared-exponential kernel. You may
find it useful to draw diagrams to illustrate this.
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3. You should either answer this question or question 2.
(a) Define a Naive Bayes model, and derive estimates for the parameters of the
model given suitable data. [6 marks |

(b) Discuss a sensible process for optimising the parameters and number of units
in a neural network. [5 marks |

(¢) Describe how Markov chains can be used to produce samples from an in-
tractable posterior distribution. You will be expected to mention important

properties of the Markov chains. [3 marks |
(d) Describe three different MCMC sampling methods, and state the disadvan-
tages of each. [5 marks |

(e) Roughly draw the contours of the negative log likelihood of a two dimen-
sional Gaussian distribution with covariance

1 07
0.7 1

Draw the same diagram again below. On the top diagram, illustrate the
sample paths of a Gibbs sampler (draw these as a connected path). On
the bottom diagram draw the sample paths of a Hamiltonian Monte-Carlo
sampler (you may presume that the accuracy and step size is such that all
the proposals are accepted. You should plot points at each sample. [4 marks |

Given samples z; from P(z) =1—2/2, 0 < x < 2, and the same number of
unbiased coin throws h; € {0,1}, how could you obtain the same number of
samples from the distribution

1/2 —z/4 for 0 <z <1
P(zx) = 1/4 for 1 <z <2
1/2—B—x)/4 for2<z<3
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