
MLPR Tutorial1 Sheet 3
Reminders: Attempt the tutorial questions, and ideally discuss them before your tutorial —
for instance at ML-Base. You can seek clarifications and hints on Hypothesis. Full answers
will be released.

1. A Gaussian classifier:

A training set consists of one-dimensional examples from two classes. The training
examples from class 1 are {0.5, 0.1, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.35, 0.25} and the examples
from class 2 are {0.9, 0.8, 0.75, 1.0}.

a) Fit a one-dimensional Gaussian to each class by matching the mean and variance.
Also estimate the class probabilities π1 and π2 by matching the observed class
fractions. (This procedure fits the model with maximum likelihood: it selects the
parameters that give the training data the highest probability.) Sketch a plot of
the scores p(x, y)=P(y) p(x | y) for each class y, as functions of input location x.

b) What is the probability that the test point x = 0.6 belongs to class 1? Mark the
decision boundary/ies on your sketch, the location(s) where P(class 1 | x) =
P(class 2 | x) = 0.5. You are not required to calculate the location(s) exactly.

c) Are the decisions that the model makes reasonable for very negative x and very
positive x? Are there any changes we could consider making to the model if we
wanted to change the model’s asymptotic behaviour?

2. More practice with Gaussians:

N noisy independent observations are made of an unknown scalar quantity m:

x(n) ∼ N (m, σ2).

a) We don’t give you the raw data, {x(n)}, but tell you the mean of the observations:

x̄ =
1
N

N

∑
n=1

x(n).

What is the likelihood2 of m given only this mean x̄? That is, what is p(x̄ |m)?3

b) A sufficient statistic is a summary of some data that contains all of the information
about a parameter.

i) Show that x̄ is a sufficient statistic of the observations for m, assuming we
know the noise variance σ2. That is, show that p(m | x̄)= p(m | {x(n)}N

n=1).

ii) Optional part: If we don’t know the noise variance σ2 or the mean, is x̄ still
a sufficient statistic in the sense that p(m | x̄) = p(m | {x(n)}N

n=1)? Explain
your reasoning.

Note: In i) we were implicitly conditioning on σ2: p(m | x̄) = p(m | x̄, σ2).
In this part, σ2 is unknown, so p(m | x̄) =

∫
p(m, σ2 | x̄)dσ2. Although no

detailed mathematical manipulation (or solving of integrals) is required.

1. Parts of this tutorial sheet are based on previous versions by Amos Storkey, Charles Sutton, and Chris Williams
2. We’re using the traditional statistics usage of the word “likelihood”: it’s a function of parameters given data,
equal to the probability of the data given the parameters. You should avoid saying “likelihood of the data” (Cf p29
of MacKay’s textbook), although you’ll see that usage too.
3. The sum of Gaussian outcomes is Gaussian distributed; you only need to identify a mean and variance.
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3. Bayesian regression with multiple data chunks:

This question involves simulations on a computer. You will generate datasets and
calculate posterior distributions. If you have trouble, at least try to work out roughly
what should happen for each part.

We will use the probabilistic model for regression models from the lectures:

p(y | x, w) = N (y; f (x; w), σ2
y ).

In this question, we set f (x; w) = w>x, where w = [w1 w2]
> and x = [x1 x2]

>, and
σ2

y = 12 = 1. We assume the following prior distribution:

p(w) = N (w; [−5 0]>, σ2
wI),

where σ2
w = 22 = 4.

Generating data: Generate some synthetic dataset as below. Only generate the data
once and do not change it when working on the parts of this question.

First, draw a w̃ from the prior distribution (i.e. draw a sample from the Gaussian). In
the whole dataset generation process, draw this w̃ only once and keep it constant.

We will generate two chunks of data D1 and D2. For chunk D1 = {x(n), y(n)}15
n=1,

generate 15 input-output pairs where each x(n) is drawn from N (x(n); 0, 0.52I). For
chunk D2 = {x(n), y(n)}45

n=16, generate 30 input-output pairs where each x(n) is drawn
from N (x(n); [0.5 0.5]>, 0.12I). For both chunks, draw the y(n) outputs using the
p(y | x, w) observation model above.

Visualising distributions on the weights: For each part that asks you to visualise a
distribution, draw 400 weight vectors from the distribution and show the samples in a
2D scatter plot. In each plot, show w̃ as a bold cross.

a) Visualise the prior distribution and discuss the relationship between the parame-
ters and the belief expressed by the prior.

b) Using equations from the lecture notes, calculate and visualise the posterior
distributions that you get after observing:

i. dataset D1, i.e. p(w | D1)

ii. dataset D2 but not D1, i.e. p(w | D2)

iii. datasets D1 and D2, i.e. p(w | D1,D2)

iv. no observations, i.e. p(w | {})

c) Take the posterior that you got in b) for p(w | D1) and now use it as a prior.
Calculate the new posterior that you get after observing D2. Numerically compare
the mean and covariance with those of p(w | D1,D2).

d) Is it important that the inputs were drawn from Gaussian distributions? What
would happen if the x(n) in D2 were drawn from a uniform distribution on the
unit square?

e) What distribution is p(w | D1) approaching when we let σ2
w approach infinity?

f) Now assume that our observations y are corrupted by additional Gaussian noise:

p(z | x, w) = N (z; y, σ2
z ).

So we now observe datasets Dz = {x(n), z(n)}N
n=1. What is the new posterior

distribution p(w | Dz)? Hint: Recall how you did Question 2.a) of this sheet.
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