
Multivariate Gaussians
[This note assumes that you know the background material on expectations of random variables.]

We’re going to use Gaussian distributions as parts of models of data, and to represent
beliefs about models. Most models and algorithms in machine learning involve more than
one scalar variable however. (A scalar meaning a single number, rather a vector of values.)
Multivariate Gaussians generalize the univariate Gaussian distribution to multiple variables,
which can be dependent.

1 Independent Standard Normals
We could sample a vector x by independently sampling each element from a standard normal
distribution, xd ∼ N (0, 1). Because the variables are independent, the joint probability is the
product of the individual or marginal probabilities:

p(x) =
D

∏
d=1

p(xd) =
D

∏
d=1
N (xd; 0, 1). (1)

Usually I recommend that you write any Gaussian PDFs in your maths using the N (x; µ, σ2)
notation unless you have to expand them. It will be less writing, and clearer. Here, I want to
combine the PDFs, so will substitute in the standard equation:

p(x) =
D

∏
d=1

1√
2π

e−x2
d/2 =

1
(2π)D/2 e−

1
2 ∑d x2

d (2)

=
1

(2π)D/2 e−
1
2 x>x. (3)

The PDF is proportional to the Radial Basis Functions (RBFs) we’ve used previously. Here
the normalizer 1/(2π)D/2 means that the PDF integrates to one.

Like an RBF centred at the origin, this density function only depends on the square-distance
or radius of x from the origin. Any point in a spherical shell (or a circular shell in 2-
dimensions) is equally probable. Therefore if we simulate points in 2-dimensions and draw
a scatter plot:

% Matlab/Octave
N = 1e4; D = 2;
X = randn(N, D);
plot(X(:,1), X(:,2), '.');
axis('square');

Or
# Python
N = int(1e4); D = 2
X = np.random.randn(N, D)
plt.plot(X[:,0], X[:,1], '.')
plt.axis('square')
plt.show()

we will see a diffuse circular spray of points. The spherical symmetry is a special property
of Gaussians. If you were to draw independent samples from, say, a Laplace distribution
you would see a non-circular distribution that has more density close to the axes.
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2 Covariance
The multivariate generalization of variance, is covariance, which is represented with a matrix.
While a variance is often denoted σ2, a covariance matrix is often denoted Σ — not to be
confused with a summation ∑D

d=1 . . .

The elements of the covariance matrix for a random vector x are:

cov[x]ij = E[xixj]−E[xi]E[xj]. (4)

On the diagonal, where i = j, you will see that this definition gives the scalar variances
var[xi] for each of the elements of the vector. We can write the whole matrix with a linear
algebra expression:

cov[x] = E[xx>]−E[x]E[x]>. (5)

Question: What is the covariance S of the spherical distribution of the previous section?
(I will reserve Σ for the covariance of the general Gaussian in the next section.)

Answer: The first term is E[xixj] = E[xi]E[xj] if xi and xj are independent, which they are if
i 6= j. Thus Si 6=j = 0. The diagonal elements Sii are equal to the variances of the individual
variables, which are all equal to one. Therefore, Sij = δij, where δij is a Kronecker delta. Or
as a matrix, S = I, the identity matrix.

3 Transforming and Rotating: general Gaussians
As with one-dimensional Gaussians, we can generalize the standard zero-mean, unit-variance
Gaussian by a linear transformation and a shift. If any of the steps here are unclear, make
sure you are comfortable with the univariate Gaussian note first.

If we generated x from independent N (0, 1) draws as above, we could form a linear
combination of these outcomes:

y = Ax. (6)

To keep the discussion simpler, I will assume that A is square and invertible, so y has the
same dimensionality as x.

Question: What is the covariance Σ of the new variable y?

Answer: Simply substitute y into the definition:

cov[y] = E[yy>]−E[y]E[y]> (7)

= E[Axx>A>]−E[Ax]E[Ax]> (8)

= AE[xx>]A> − AE[x](AE[x])>. (9)

Because E[x] is zero, the second term is zero, and the expectation in the first term is equal to
cov[x] = I. Therefore,

cov[y] = Σ = AA>. (10)

Because we’re assuming A is invertible, we can compute the original vector from the
transformed one: x = A−1y. Substituting that expression into the PDF for x we can see the
shape of the new PDF:

p(y) ∝ e−
1
2 (A−1y)>(A−1y) (11)

∝ e−
1
2 y>A−>A−1y. (12)
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However, if we have stretched out the PDF we must scale it down to maintain probability
mass. If we apply a linear transformation A to a volume of points, then the volume is
multiplied by |A|, the determinant of the matrix.1 Therefore,

p(y) =
1

|A|(2π)D/2 e−
1
2 y>A−>A−1y. (13)

Usually this expression is re-written in terms of the covariance of the vector. Noticing that

Σ−1 = A−>A−1, and (14)

|Σ| = |AA>| = |A||A>| = |A|2, (15)

we can write:

p(y) =
1

|Σ|1/2(2π)D/2 e−
1
2 y>Σ−1y = |2πΣ|−1/2 e−

1
2 y>Σ−1y. (16)

As demonstrated above, there are different equivalent ways to write the normalizing constant,
and different books will choose different forms.2

Finally, we can shift the distribution to have non-zero mean:

z = y + µ. (17)

Shifting the PDF does not change its normalization, so we can simply substitute y = z−µ
into the PDF for y:

p(z) = N (z; µ, Σ) = 1
|Σ|1/2(2π)D/2 e−

1
2 (z−µ)>Σ−1(z−µ). (18)

Here we’ve generalized the N notation for Gaussian distributions to take a mean vector
and a matrix of covariances. In one-dimension, these quantities still correspond to the scalar
mean, and the variance.

It’s a common mistake to forget the matrix inverse inside the exponential. The inverse
covariance matrix Σ−1, is also known as the precision matrix.

4 Covariances are positive (semi-)definite
[This section may be tough going on first reading. If so, keep going and work through the “check your
understanding” section!]

Covariance matrices are always symmetric: in the definition of covariance cov[xi, xj] =
cov[xj, xi] or Σij = Σji. Moreover, just as variances must be positive — or zero if we are
careful — there is a positive-like constraint on covariance matrices.

A real3 symmetric matrix Σ is positive definite iff4 it satisfies:

z>Σ z > 0, for all real vectors z 6= 0. (19)

1. Here |A| is the “Jacobian of the transformation”, although confusingly “Jacobian” can refer to both a matrix
and its determinant. The change of variables might be clearer if we label the different probability density functions:
pY(y) = pX(x)/|A| = pX(A−1y)/|A|. See also the further reading section.
2. Over the years, many students have questioned whether and why 1/(|Σ|1/2(2π)D/2) = |2πΣ|−1/2. The first
thing I do when unsure, is check at a Matlab or Python prompt. For example, in Matlab: D=5; Sigma=randn(D,D);
lhs = 1/(det(Sigma)ˆ0.5*(2*pi)ˆ(D/2)), rhs = det(2*pi*Sigma)ˆ-0.5. To understand why they’re equal: for a
scalar c and a matrix A, we can write |cA| = |cIA| = |cI||A| = cD |A|. The transformation cI stretches an object in
each of D directions by c. The determinant gives the resulting volume change of cD .
3. I often forget such distinctions, as I rarely deal with complex numbers. Although machine learning systems that
use complex numbers have been proposed.
4. “iff” means “if and only if”.
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these matrices are always invertible, and the inverse is also positive definite:

z>Σ−1z > 0, for all real vectors z 6= 0. (20)

Therefore, the exponential term in the probability density of a Gaussian falls as we move
away from the mean in any direction iff the covariance is positive definite. If the density
didn’t fall in some direction then it wouldn’t be normalized (integrate to one), and so
wouldn’t be a valid density.

Edge case: In general, covariances can be positive semi-definite, which means:

z>Σ z ≥ 0, for all real vectors z. (21)

However, if z>Σ z = 0 for some z 6= 0, then the determinant |Σ| will be zero, and the
covariance won’t be invertible. Therefore the expression we gave for the probability density
is only valid for strictly positive definite covariances.

An example of a Gaussian distribution where the covariance isn’t strictly positive definite
can be simulated by drawing x1 ∼ N (0, 1) and deterministically setting x2 = x1. You should
be able to show that the theoretical covariance of such vectors is:

Σ =

[
1 1
1 1

]
, (22)

and you could simulate the process to confirm. In this example, the probability density is
zero “almost everywhere”, for any x where x1 6= x2. The only way to make

∫
p(x) dx = 1 is to

make the density infinite along the line x1= x2. Gaussian distributions with zero-determinant
covariances generalize the Dirac delta function, where the distribution is constrained to a
surface with zero volume, rather than just a point. Care is required with such distributions,
both analytically and numerically. We will stick to strictly positive definite covariances
whenever we can.

Given a real-valued matrix A, Σ = AA> is always positive semi-definite. Moreover, if Σ
is symmetric and positive semi-definite, it can always be written in this form. Allowing
non-symmetric Σ wouldn’t expand the set of probability densities that can be expressed (cf
Tutorial 1, Q1di). Therefore, the process for sampling from a Gaussian that was described in
this document is general: we can sample from any Gaussian by transforming draws from
a standard normal, and such a process always generates points from a distribution with a
well-defined covariance. Methods to find a transformation matrix A from a covariance Σ are
discussed in Tutorial 2.

5 Check your understanding
A special case of a general transformation A, is a diagonal matrix, that simply stretches each
variable independently: Λij = δijσi. For three dimensions the transformation would be:

Λ =

 σ1 0 0
0 σ2 0
0 0 σ3

 . (23)

What is the covariance matrix Σ? If x is generated with standard normals, and z = Λx, can
you write p(z) as a product of univariate Gaussian distributions? Are the zi variables all
independent?

You could use Matlab/Octave or Python to sample some points from different multivariate
Gaussians, and see how the covariance affects the cloud of points.

For example, you could use a family of transformations parameterized by a:

A =

[
1 0
a 1−a

]
, (24)
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What does this transformation do? Is it clear why the variables are dependent for a 6= 0?
When are the variables maximally dependent? What happens to the PDF as a→ 1 and why?
Does the covariance matrix have an inverse when a=1?

It’s always good to look for tests you can apply to your code. When you sample some points,
is the empirical covariance of the points (the estimate given by cov in Matlab or NumPy)
close to what you’d expect?

An empirical covariance is where the expectations in the definition of covariance, are replaced
with averages over samples5. Can you write your own version of cov from primitive matrix
operations?

The shape of a two-dimensional Gaussian is often sketched using a contour of its PDF. The
contours of the radially symmetric Gaussian are circular. So if you compute the (x1, x2)
coordinates of some points on a circle, these can be joined up to plot a contour of the
Gaussian with identity covariance. You can then transform these points, just like sample
positions, with a matrix A, to plot a contour of N (x; 0, AA>).

A puzzle: Given a covariance matrix Σ, the transformation A is not uniquely defined. For
example

A =

[
2 0
0 2

]
, and A =

[ √
3 1
−1

√
3

]
, (25)

both give the same product AA>. Can you explain how to generate an arbitrary number of
transformations A that share the same Σ = AA>?

6 Further reading
https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Both Bishop Section 2.3 and Barber Section 8.4 start with the definition that this note builds
up to, and then works in the reverse direction from there to build up an interpretation. These
sections then go further than this note, and both these books have some further exercises.
The treatment by Murphy, Section 2.5.2, is rather more terse!

Transforming the PDF of the spherical distribution required getting the normalization correct
due to the change of variables. If you would like a more rigorous treatment, or to understand
what to do if the transformation is non-linear, I’ll defer to the text books. The maths for
transforming a PDF due to a change of variables is quickly reviewed in Barber Section 8.2,
Result 8.1. Murphy’s treatment is longer this time, in Section 2.6.

5. There is also an “(N−1)” version of the estimator, just as there is for estimating variances.
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