Tutorials: • 1st sheet up
 • Meetings next week (TBA soon!)
 • Answers released end next week

Assignment pairs:
 See website

Hypothesis Forum
 - Share links, code snippets
 - Get code review
 - Ask Q's
 - Post answers < help others get feedback
Linear Regression Reminders

Model \(f(x) = w^T \phi(x) \)

Can minimize

\[
\sum_n (y^{(n)} - w^T \phi(x^{(n)}))^2 \text{ wrt } w \\
= (y - \Phi w)^T (y - \Phi w)
\]

\(\phi(x) = [\phi_1(x), \phi_2(x), \ldots, \phi_k(x)]^T \)

\(\phi_k(x) \) any scalar function

- Monomial, e.g. \(x_2, x_3 x_4^3, \ldots \)

- RBF

\[
\begin{array}{ccc}
\text{\(w^T \)} & \Rightarrow & \text{\(\Phi \)} \\
\text{\(x \)} & & \text{\(\sigma(x) \)}
\end{array}
\]

- Sigmoid
Why are large weights bad?

If w are bounded then function bounded.

Large derivatives are bad.
If w are bounded \(\Rightarrow \) derivatives are bounded.

RBF: Always extrapolates to 0.

\(\sigma(x) \)

- Mean square error vs. polynomial order p
- Validation and train error graphs
- Overfitting and underfitting
- Reasonable model selection
- Regularization λ
Generalization

\[E_{\text{gen}} = \mathbb{E}_{p(x,y)} \left[L(y, f(x)) \right] \]

Loss function

Assuming there is some fixed distribution on future inputs & outputs

\[= \iint L(y, f(x)) \ p(x, y) \ dx \ dy \]

Monte Carlo approximation

\[\approx \frac{1}{M} \sum_{m=1}^{M} L(y^{(m)}, f(x^{(m)})) = E_{\text{test}} \]

\[y^{(m)}, x^{(m)} \sim p(x, y) \]

Draw samples from a held out test set.
Data Splits

Training set: fit w

Don't fit:

Order of a polynomial
of RBFs
Regularization constant λ

Validation Set

To fit λ, model choices

Test set

To report estimate of generalization error.

Reading: kaggle blog.