
MLPR Tutorial Sheet 5
Reminders: Attempt the tutorial questions, and ideally discuss them, before your tutorial.
You can seek clarifications and hints on the class forum. Move on if you’re getting stuck on
a part for a long time. Groups often won’t discuss every part. Full answers will be released
after the last group meets.

1. The costs of some classifiers:

We have a training set of N examples, with D-dimensional features and binary labels.

Assume the following computational complexities: matrix-matrix multiplication AB
costs O(LMN) for L×M and M×N matrices A and B. Inverting an N×N matrix G
and/or finding its determinant costs O(N3).1

a) What is the computational complexity of training a “Bayes classifier” that models
the features of each class by a maximum likelihood Gaussian fit (a Gaussian
matching the mean and covariances of the features)?

b) What is the computational complexity of assigning class probabilities to a test
feature vector?

c) In linear discriminant analysis we assume the classes just have different means,
and share the same covariance matrix. Show that given its parameters θ, the “log
odds” for a binary classifier,

log
p(x | y=1, θ)

p(x | y=0, θ)
= log p(x | y=1, θ)− log p(x | y=0, θ),

is a linear function of x (as opposed to quadratic).

d) When the log odds are linear, the predictions have the same form as logistic
regression: P(y = 1 | x, θ) = σ(w>x + b), but the parameters w(θ) and b(θ) are
fitted differently.

How do your answers to a) and b) change when the classes share one covariance?
What can you say about the cost of the linear discriminant analysis method
compared to logistic regression?

2. Linear autoencoder

We centre our data so it has zero mean and fit a linear autoencoder with no bias
parameters. The autoencoder is a D-dimensional vector-valued function f, computed
from D-dimensional inputs x, using an intermediate K-dimensional “hidden” vector h:

h = W(1)x

f = W(2)h.

Assume we want to find a setting of the parameters that minimizes the square error
‖f− x‖2 = (f− x)>(f− x), averaged (or summed) over training examples.

a) What are the sizes of the weight matrices W(1) and W(2)? Why is it usually not
possible to get zero error for K<D?

1. In fact, good implementations usually take a factorization of G rather than inverting it, which also costs O(N3).
Given that factorization, we can compute G−1 H in O(N2K), where H is N×K, and find the (log) determinant in
O(N). I’m using “big-O notation”. A good introduction on this notation in the context of computational complexity
are the notes from our second year Inf2b course. Applied areas like machine learning usually use big-O notation
more sloppily than in that note; I think I have only once used Ω or Θ.
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b) It’s common to transform a batch (or “mini-batch”) of data at one time. Given an
N×D matrix of inputs X, we set:

H = XW(1)>

F = HW(2)>

The total square error E = ∑nd(Fnd − Xnd)
2, has derivatives with respect to the

neural network output

∂E
∂Fnd

= 2(Fnd − Xnd), which we write as F̄ = 2(F− X).

Using the backpropagation rule for matrix multiplication,

C = AB> ⇒ Ā = C̄B and B̄ = C̄>A,

write down how to compute derivatives of the cost with respect to W(1) and W(2).
If time: you should be able to check numerically whether you are right.

c) The PCA solution sets W(1)=V> and W(2)=V, where the columns of V contain
eigenvectors of the covariance of the inputs. We only really need to fit one matrix
to minimize square error.

Tying the weight matrices together: W(1) = U> and W(2) = U, we can fit one
matrix U by giving its gradients Ū = W̄(1)> + W̄(2) to a gradient-based optimizer.
Will we fit the same V matrix as PCA?

3. Non-linear autoencoders

Some datapoints lie along the one-dimensional circumference of a semi-circle. You
could create such a dataset, by drawing one of the features from a uniform distribution
between −1 and +1, and setting the other feature based on that:

x(n)1 ∼ Uniform[−1, 1]

x(n)2 =

√
1−

(
x(n)1

)2.

a) Explain why these points can’t be perfectly reconstructed when passed through
the linear autoencoder in Q2 with K=1.

b) Explain whether the points could be perfectly reconstructed with K=1 by some
non-linear decoder: f = g(h). Where g could be an arbitrary function, perhaps
represented by multiple neural network layers. Assume the encoder is still linear:
h = W(1)x.

c) Explain whether the points could be perfectly reconstructed with K=1 by some
non-linear encoder: h = g(x). Where g could again be an arbitrary function,
perhaps represented by multiple neural network layers. Assume the decoder is still
linear: f = W(2)h.

If you run out of things to do (I think most of the class actually have plenty to do), you
could try to implement and fit some of the models mentioned above. For example, can you
fit a dataset as well as PCA using the ideas in Q2? Or can you create and fit a dataset lying
on a low-dimensional manifold as in Q3? There’s probably not time to discuss or debug
code in your tutorial groups. However, I will comment on code posted to the forum:

```
# Put code between three backtics like this.
```
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