
Regression and Gradients
The previous note gave two approaches to classification where fitting the models had a
closed-form solution. If you have previously learned some machine learning, you may know
of other simple procedures, such as K-nearest neighbours that are also easy to describe and
implement (at least for small scale problems). 1

As we imagine building larger and more interesting models, we hit many questions. If we
want to set the centres of many basis functions, how can we fit them to data instead of
placing them by hand? Many algorithms, including for example K-nearest neighbours, give
different answers if we linearly transform our variables before we start. How do we find a
good transformation?2 If we want a different cost function than least squares for regression,
how can we fit the parameters?

Many such questions in machine learning are answered by rewriting the question as an
optimization problem, and solving it numerically. Many, but not all, optimization problems
are solved by gradient-based methods, which we begin to look at in this note. We start by
looking at how linear least squares regression can be solved, so we can generalize it to other
cases.

Gradients for linear least squares regression
We can create a vector of residuals (differences between observed values and function values)
for a linear regression model as follows:

r = y− Xw.

And previously we noticed that Matlab and Numpy know how to minimize the sum of the
square residuals:

r>r = (y− Xw)>(y− Xw)

= y>y− 2w>X>y + w>X>Xw.

We’ll now look at different ways that can be done.

Our first task is to find the gradient of this cost function with respect to the weights. That
is, the vector of partial derivatives: ∇wr>r. The gradient vector is a function of the weights.
At a given position in weight-space, it points in the direction in which a small movement
will increase the cost the most. You were asked to show this fact in the background self-test,
question 6ii), which has an answer available if you need to review this material.

We can differentiate small matrix/vector expressions by writing them as sums, and using
the elementary differentiation rules for scalars. For example:

∂x>y
∂xi

=
∂ ∑j xjyj

∂xi
= yi, ⇒ ∇x[x>y] = y.

and
∂x>Ax

∂xi
=

∂ ∑jk xj Ajkxk

∂xi
= ∑

k
Aikxk + ∑

j
xj Aji,

⇒ ∇x[x>Ax] = Ax + A>x, or 2Ax if A is symmetric.

After some experience, you might remember some of these matrix/vector rules. Other such
rules can be found in references like The Matrix Cookbook. I will discuss a more systematic
approach to differentiate large functions in a later note.

For now, we can use the two rules we’ve derived to differentiate the cost function above:

∇w[r>r] = −2X>y + 2X>Xw.

1. If you don’t know what the K-nearest neighbour rule is, an algorithm almost described by its name, I recommend
having a quick look.
2. Keen students could look at one answer in this paper:
http://papers.nips.cc/paper/2566-neighbourhood-components-analysis

MLPR:w3b Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2017/ 1

https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274
http://papers.nips.cc/paper/2566-neighbourhood-components-analysis
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2017/

A closed form solution

The partial derivatives are all zero at the optimum weight vector, and we can solve for where
that happens:

−2X>y + 2X>Xw = 0

⇒ X>Xw = X>y

⇒ w = (X>X)−1X>y.

This expression is known as the normal equation solution of the least squares problem. You
could implement this solution as follows:

% Matlab/Octave
ww = (X'*X)\(X'*yy)

NumPy (or use the Cholesky solvers in scipy):
ww = np.linalg.solve(np.dot(X.T, X), np.dot(X.T, yy))

I have attempted to avoid numerical problems by solving the linear system directly rather
than inverting the matrix X>X. However this code is not the most accurate way to solve
least squares problems, which can be accessed by calling a dedicated routine (through \ or
lstsq, as previously demonstrated).3

Iterative methods

There are also generic algorithms that iteratively improve an initial guess of some model
parameters using a cost function and its gradient vectors. While linear regression has
specialist solvers, we could apply these generic algorithms anyway. If they don’t work in
simple cases, they’re not likely to be useful more generally!

A naive way to use the gradient ∇w[r>r] is the steepest-descent method:

w← w− η∇w[r>r],

which uses a small step size η. The parameters are moved in the direction that makes the
biggest immediate change. The rule is applied repeatedly, with the gradient re-evaluated
before each update. There are several methods (found in Matlab’s optimization toolbox and
scipy) that will converge faster. Sometimes much faster.

It may help to rewrite the gradient to understand what the steepest descent rule is doing.

∇w[r>r] = 2X>(Xw)− 2X>y

= 2X>(f− y)

= 2 ∑
n

x(n)(f (n) − y(n)).

For each example we look at the ‘prediction error’, (f − y). The weights are pulled most in
the direction of inputs that had large prediction errors, to reduce misfit in those directions.

In Stochastic Gradient Descent (SGD) we take just one example at a time (perhaps at ran-
dom, or visit the examples in order). Each example gives a crude one-sample Monte Carlo
approximation of the gradient sum:

1
N
∇w[r>r] ≈ 2x(n)(f (n) − y(n)).

3. See Solving Least Squares Problems, Lawson and Hanson (1974), Chapter 19, which argues that it’s better to use a
QR decomposition of the data matrix than losing precision by forming the summary X>X. Murphy’s textbook also
champions the QR approach. I must say I’m not totally convinced. For noisy and regularized machine learning
problems I’ve tried, the normal equations approach seems fine, and is ∼10× faster on my machine. However, I still
frequently use the QR solvers: they’re still quite fast, convenient, and I don’t have to keep checking whether the
normal equations approach will be accurate.

MLPR:w3b Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2017/ 2

http://dx.doi.org/10.1137/1.9781611971217
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2017/

We take a small step in minus this direction. Then pick another example and repeat. Each
time we see an example, we move the weights in a direction proportional to just one of the
input vectors.

If we have 100,000 datapoints, we perform 100,000 updates in one sweep through the dataset
(a ‘training epoch’). In the traditional (batch) steepest gradient descent method, we only
perform one update after looking at the whole dataset once. In the limit of an infinite stream
of data, SGD can fit a model as the data comes in. A traditional batch method never gets
started, as it can never compute the gradient.

Once we have a working gradient-based optimization procedure4, we can apply it to
problems beyond linear regression. We need to identify a suitable cost function, which no
longer needs to be least squares, and then obtain its gradients.

Check your understanding
What would happen to the normal equation solution in linear regression problems with
more features than datapoints (D > N, or as statisticians would say, p > n)?

In a previous note we saw that we can use a simple linear least squares solver to fit L2
regularized least squares problems. If we applied that trick, would it solve the problem with
the normal equations for D > N?

Instead of applying the trick we used before to fit L2 regularized models, can you generalize
the derivation of the normal equation to explicitly cover this case? (Many textbooks have the
answer to this problem.)

Further Reading
Murphy derives the least squares solution in Chapter 7. The description uses a Gaussian
model to motivate the least squares cost function throughout.

Barber Chapter 17 starts with linear regression.

Numerical Recipes (Press et al.) will tell you that steepest gradient descent is a bad algorithm,
and describes more sophisticated alternatives. See the section on Conjugate Gradient Meth-
ods in Multidimensions (section 10.6 of the second edition or 10.8 of the third edition). The
books have some nice descriptions, but I would stay clear of the code (better alternatives
with free licenses are available). However, they only describe ‘batch’ methods, that look at
an entire dataset before making each update. Stochastic (steepest) gradient descent is not
such a bad algorithm, especially for machine learning. https://arxiv.org/abs/1606.04838
is one recent survey.

4. And we might find one slightly more sophisticated than described above.

MLPR:w3b Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2017/ 3

http://numerical.recipes/
https://arxiv.org/abs/1606.04838
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2017/

	 Regression and Gradients
	 Gradients for linear least squares regression
	 A closed form solution
	 Iterative methods

	 Check your understanding
	 Further Reading

