
Unsupervised learning, Clustering

“Human brains are good at finding regularities in data.

One way of expressing regularity is to put a set of

objects into groups that are similar to each other.

For example, biologists have found that most objects

in the natural world fall into one of two categories:

things that are brown and run away, and things that

are green and don’t run away. The first group they

call animals, and the second, plants.”

— David MacKay, ITILA textbook p284
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Stanley

Stanford Racing Team; DARPA 2005 challenge

http://robots.stanford.edu/talks/stanley/

http://robots.stanford.edu/talks/stanley/


How to stay on a road?



Perception and intelligence

It would look pretty stupid to run off the road,

just because the trip planner said so.



Clustering to stay on the road

Stanley used a Gaussian mixture model.

The cluster just in front is road (unless we already failed).



Example: Image denoising

y: x:

p(x |y) ∝ p(y |x) p(x)
Likelihood: e.g. N (y; x, σ2I)

Prior samples:

. . .



Zoran and Weiss, ICCV 2011

(a) Blurred (b) Krishnan et al. (c) EPLL GMM

Krishnan et al. EPLL-GMM

Kernel 1 17× 17 25.84 27.17

Kernel 2 19× 19 26.38 27.70

Figure 8: Deblurring experiments

5. Discussion
Patch based models are easier to learn and to work with

than whole image models. We have shown that patch models
which give high likelihood values for patches sampled from
natural images perform better in patch and image restora-
tion tasks. Given these results, we have proposed a frame-
work which allows the use of patch models for whole image
restoration, motivated by the idea that patches in the restored
image should be likely under the prior. We have shown that
this framework improves the results of whole image restora-
tion considerably when compared to simple patch averaging,
used by most present day methods. Finally, we have pro-
posed a new, simple yet rich Gaussian Mixture prior which
performs surprisingly well on image denoising, deblurring
and inpainting.

While we have demonstrated our framework using only a
few priors, one of its greater strengths is the fact that it can
serve as a “plug-in” system - it can work with any existing
patch restoration method. Considering the fact that both
BM3D and LLSC are patch based methods which use simple
patch averaging, it would be interesting to see how would
these methods benefit from the proposed framework.

Finally, perhaps the most surprising result of this work,
and the direction in which much is left to be explored, is the
stellar performance of the GMM model. The GMM model
used here is extremely naive - a simple mixture of Gaussians
with full covariance matrices. Given the fact that Gaussian
Mixtures are an extremely studied area, incorporating more
sophisticated machinery into the learning and the represen-
tation of this model holds much promise - and this is our
current line of research.
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p(x) = Mixture of Gaussians fitted to patches













EM algorithm for Gaussian mixtures
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Bishop Figure 9.8, or see Murphy p353


