Variational Methods

Approximate posterior with \(q(w; x) = N(w; m, V) \) e.g. \(\frac{w}{x} \)

For prediction, fitting one mode might be ok.

Minimize \(\text{D}_\text{KL}(q(w;x) \parallel p(w|D)) \)

\[
\text{D}_\text{KL} = \int q(w;x) \log \frac{q(w;x)}{p(w|D)} \, dw
\]

\[
= \mathbb{E}_q \left[\log q(w;x) \right] - \mathbb{E}_q \left[\log p(w|D) \right]
\]

- Entropy \([q] \)

Could min. this term with \(q = N(w; w^*, 0) \)

⇒ Spread out distribution.
Substitute in
\[p(w|D) = \frac{p(D|w)p(w)}{p(D)} \]

\[D_{kl} = \mathbb{E}_q[\log q] - \mathbb{E}_q[\log p(D|w)] - \mathbb{E}_q[\log p(w)] + \mathbb{E}_q[\log p(D)] \]

J, "can evaluate" Don't know, log Marginal Likelihood

Minimize \(D_{kl} \), by minimizing \(J \)

Gibbs' inequality \(D_{kl} \geq 0 \)

\[J + \log p(D) \geq 0 \]

\[\log p(D) \geq -J \]

\(\Rightarrow \) Lower bound on marginal likelihood.

To fit model choices or hyperparameters

Jointly minimize \(J \) w.r.t. \(\theta, \psi, \beta \)

and w.r.t. model hyperparameters \(\omega^2 \)
Might work...

log p(D | \omega^2)

\sigma^2

Good fit to \sigma^2

lower bound, -J

Bad case:

True function

lower bound

out of bound.
Optimizing J

Gradient-based optimization.
Particularly stochastic gradient descent SGD

On $\alpha = \sum m_i V^3$ and hyper... eg ω^2

Unconstrained optimization (Trick #1)

If we optimized ω^2 with SGD we might make it -ve
Optimize $\log \omega$ instead

V has to be positive definite, symmetric

$V = LL^T$, L lower triangular
Diagonal is tve.

We create another matrix

$L_{i,j} = \begin{cases} L_{i,j} & i \neq j \\ \log L_{i,i} & i = j \end{cases}$

Optimize \tilde{L} \(\exp\) diagonal $\rightarrow L \rightarrow V = LL^T \rightarrow$ est cost

SGD \leftarrow backprop.
Evaluating the terms

"Entropy Terms" — we can compute...
For any m, V, σ_w^2...

Likelihood Term

\[\mathbb{E}_q [\log p(D | w)] \]

\[= \mathbb{E}_q \left[\sum_{n=1}^N \log p(y^{(n)} | x^{(n)}, w) \right] \]

At least for logistic regression
we can solve numerically.

Stochastic estimate — "Reparameterization trick"

\[\mathbb{E}_{N(w; m, V)} [f(w)] \]

\[= \mathbb{E}_{N(\varepsilon; 0, I)} [f(m + L \varepsilon)] \]

Sample w, by $\varepsilon \sim N(0, I)$

\[w = m + L \varepsilon \]
Monte Carlo estimate

\[\approx \frac{1}{S} \sum_{s=1}^{S} f(m + L \varepsilon_s), \]

\(\varepsilon_s \sim N(0, I) \)

simplest approx. \(S = 1 \)

\[\approx f(m + L \varepsilon), \quad \varepsilon \sim N(0, I) \]

Unbiased estimate.

\[\nabla_m \mathbb{E}_{N(\varepsilon; 0, I)} \left[f(m + L \varepsilon) \right] \]

\[\approx \nabla_m f(m + L \varepsilon), \quad \varepsilon \sim N(0, I) \]

Unbiased

\[\nabla_L \mathbb{E}_{N(\varepsilon; 0, I)} \left[f(m + L \varepsilon) \right] \]

... \(\nabla_w f(w) \bigg|_{w=m+L\varepsilon} \)

As long as you can differentiate \(f(w) = \log p(y^{(n)}|x^{(n)}, w) \)

... apply chain rule.