Bayesian Linear Regression

Some different plausible lines \((w_1 x + w_2 x^2)\)

Prior (Example) \(p(w) = N(w; 0, \sigma w^2 I)\)

\(\Rightarrow\) Broad range functions plausible before seeing data

Posterior \(\sim\) likelihood

\[p(w | D) \propto p(w) p(y | x, w) \]

\[= N(w; w_N, V_N) \]

For Gaussian prior and noise

Negative slope exceedingly implausible

\(w_N\), slope

Negative intercept possible.
Probabilistic Prediction

\[f(x) = w^T x = x^T w \]

\[p(f(x) | Data) = N(f; w_N^T x, x^T V_N x) \]

\[p(y | Data) = N(y; \mu, \sigma_y^2) \]

Questions

Uncertainty \(x^T V_N x \) grows with \(x \)

1. Why in figure is most certain region at \(x > 0 \) (around \(x = 3 \))?

2. What do contours of \(x^T V_N x \) look like?

A

\[\begin{array}{c}
\begin{array}{c}
\cdots
\end{array}
\end{array} \]

B

\[\begin{array}{c}
\begin{array}{c}
\cdots
\end{array}
\end{array} \]

C

\[\begin{array}{c}
\begin{array}{c}
\cdots
\end{array}
\end{array} \]

D Other

\[??? \]
V_N was posterior covariance of w

Contours $N(w; w_N, V_N)$

$-\frac{1}{2} (w - w_N)^T V_N^{-1} (w - w_N)$
Decisions - Loss function

\[L(y, \hat{y}) \]

\[\uparrow \quad \text{"point estimate"} / \quad \text{"guess"} \]

Loss what happens

Minimize expected loss

\[c = \int L(y, \hat{y})p(y | \text{Data}) dy \]

\[= \mathbb{E}_{p(y | \text{Data})} [L(y, \hat{y})] \]

Find \(\hat{y} \) that minimizes \(c \)

E.g. square loss \(L(y, \hat{y}) = (y - \hat{y})^2 \)

\[\frac{dc}{d\hat{y}} = \mathbb{E} [2(y - \hat{y})] \]

\[= 0 \text{ if } \mathbb{E}[y] = \hat{y} \]

Estimate \(\hat{y} = \text{mean belief} \).
Overfitting

Bayesian don't fit

$\hat{w} = \arg\min_w \text{cost}(w)$
do n't do

Compute beliefs $p(w|D)$... decision

"Underfitting"

Over simple models

\Rightarrow Over-confident

Residuals

\Rightarrow Tell us things are wrong

"Model checking"
Bayesian methods with lots of parameters

\[\phi_1, \phi_2, \phi_3, \phi_4, \phi_5 \rightarrow \]

Observe data \downarrow

Samples from prior

Sample from posterior

Extreme flexible model:

\[\ldots \]

\[10^6 \text{ basis functions} \]

Can model:

\[f(x) \uparrow \]

\[10^{-6} \]
If prior \(p(w_k) = N(w_k; 0, \sigma^2_w) \)

Independent \(p(w) = N(w; 0, \sigma^2_w) \)

What's the posterior?
Probabilistic model choice

Bayes classifiers

Model for class 1
\[p(x \mid M_1) \]

Contours of \[p(x \mid M_2) \]

Regression

\[p(y \mid X, M) = \int p(y, w \mid X, M) \, dw \]

\[= \int p(y \mid X, w, M) \, p(w \mid X, M) \, dw \]

Marginal

Likelihood of Model, scores how good model is.