Feed-forward Neural Networks

\[f \circ f = g^{(3)}(W^{(3)}h^{(2)} + b^{(3)}) \]

\[h^{(2)} = g^{(2)}(W^{(2)}h^{(1)} + b^{(2)}) \]

\[h^{(1)} = g^{(1)}(W^{(1)}x + b^{(1)}) \]

- When \(f \) is a scalar, \(W^{(3)}h^{(2)} = w^{(3)}h^{(2)} \)

- Other architectures possible:
 - "skip connections"
 - Parameterize the \(g \)'s non-linearities

- Special layers for images/audio
 - Conv Nets ... and others.
Initialization

Don't set all weights the same.

Naive code: \(W_{ij}^{(l)} \sim N(0, 1) \) (use \texttt{randn}())

\[
h_k^{(l)} = g \left(\frac{1}{k^{(l-1)}} + b_k^{(l)} \right)
\]

\(g = \sigma(a) \)

Typically how big is this sum over \(k^{(l-1)} \)?

Background on expectations:

Typically sum \(\sim \pm \sqrt{K^{(l-1)}} \)

Example Initialization \(w \sim N(0, (\frac{1}{\sqrt{k}})^2) \)

MLP: More sophisticated suggestions.
NN don't ever have a convex cost

Convex \Rightarrow\text{Unique optimum}

Set \(w^{(1)} \) to their best values.

- These local optima don't matter
 \rightarrow \text{because the function (predictions) are the same.}

- Not all optima are equivalent.
- Use heuristics to get good fits.
- Random restarts. -- not if network large/expensive.
Regularization

Could do L2 regularization

Set λ... cross-validate.

Cost

![Graph showing training and validation cost over iterations.](image)

This gap is not "overfittingness".

Every k updates:

If val. cost the smallest I've seen:
- Store the weights & val. cost

If val. cost hasn't improved in 20 updates:
- Stop. Return the weights we stored from best val. score.
Getting gradients - Reverse-mode differentiation

Backpropagation

\[L(f, y) \]

\[f \]

\[y \]

\[a^{(2)} \]

\[W^{(2)} \]

\[b^{(2)} \]

\[a^{(1)} \]

\[h^{(1)} \]

\[b^{(1)} \]

\[W^{(1)} \]

\[h^{(0)} \]

\[b^{(0)} \]

\[x \]

Strategic:

\[\frac{\partial L}{\partial f} = \frac{\partial c}{\partial f} \]

\[\frac{\partial L}{\partial a_i^{(2)}} = \frac{\partial c}{\partial a_i^{(2)}} \]

\[\frac{\partial L}{\partial W^{(2)}} = \frac{\partial c}{\partial W^{(2)}} \]

\[\frac{\partial L}{\partial b^{(2)}} = \frac{\partial c}{\partial b^{(2)}} \]

\[\frac{\partial L}{\partial W_{i,j}^{(1)}} = \frac{\partial c}{\partial W_{i,j}^{(1)}} \]

For every intermediate \(\theta \)

get \(\theta = \frac{\partial c}{\partial \theta} \)
Derivative Propagation

\[\ldots \rightarrow u \xrightarrow{f} w \rightarrow \ldots \rightarrow c \]

Assume we have

\[\overline{w} = \frac{\partial c}{\partial w} \]

Want:

\[\overline{u} = \frac{\partial c}{\partial u}, \quad \overline{v} = \frac{\partial c}{\partial v} \]

Chain rule:

\[\frac{\partial c}{\partial u} = \frac{\partial c}{\partial w} \frac{\partial w}{\partial u} \]

Number which is propagated to us.

Derivative of small local function. Look up expression of \(u, v \) (and/or \(w \)) to use.