Tutorials: • 1st sheet up
 • Meetings next week (TBA soon!)
 • Answers released end next week

Assignment pairs:
 see website

Hypothesis Forum
- Share links, code snippets
- Get code review
- Ask Q's
- Post answers < help others get feedback
Linear Regression Reminders

Model \(f(x) = w^T \phi(x) \)

Can minimize \[\sum_n (y^{(n)} - w^T \phi(x^{(n)}))^2 \]

wrt \(w \) \[
= (y - \Phi w)^T (y - \Phi w)
\]

\(\phi(x) = [\phi_1(x), \phi_2(x), \ldots, \phi_k(x)]^T \)

\(\phi_k(x) \) any scalar function
- Monomial, e.g. \(x_2, x_3 x_4^3, \ldots \)
- RBF
- Sigmoid

\[w^T \rightarrow \sigma(x) \]
If \(w \) are bounded
then \(f \) is bounded

(Chebfun)

Large derivatives are bad
If \(w \) are bounded
\(\rightarrow \) derivatives also bounded.

RBF always extrapolates to 0.

Sigmoid extrapolates like this.
Mean square error

Validation
Train

p, polynomial order

log regularization constant
Generalization

\[E_{\text{gen}} = \mathbb{E}_{p(x,y)} \left[L(y, f(x)) \right] \]

We assume there is some fixed distribution \(p(x, y) \) on future inputs & outputs

\[E_{\text{gen}} = \iint L(y, f(x)) p(x, y) \, dx \, dy \]

unbiased

Monte Carlo approximation

\[\approx \frac{1}{M} \sum_{m=1}^{M} L(y^{(m)}, f(x^{(m)})) = E_{\text{test}} \]

\[y^{(m)}, x^{(m)} \sim p(x, y) \]

Draw examples from held out test set.

But not if model was selected so \(E_{\text{test}} \) is small.
Data Splits

Training set: fit w

(Don't fit:
Order of a polynomial
of RBFs
Regularization constants.)

Validation set: (Development set)

To fit \(\lambda \), model choices

Test set: To report estimate of generalization error.

Reading: Kaggle blog.