
Variational objectives and KL Divergence
The Laplace approximation fitted a Gaussian distribution to a parameter posterior by
matching a mode and the curvature of the log posterior at that mode. We saw that there
are failure modes when the shape of the distribution at the mode is misleading about the
over-all distribution.

Variational methods fit a target distribution, such as a parameter posterior, by defining an
optimization problem. The ingredients are:

• A family of possible distributions q(w; α).

• A variational cost function, which describes the discrepancy between q(w; α) and the
target distribution (for us, the parameter posterior).

The computational task is to optimize the variational parameters (here α).1

For this course, the variational family will always be Gaussian:

q(w; α={m, V}) = N (w; m, V).

So we fit the mean and covariance of the approximation to find the best match to the
posterior according to our variational cost function. Although we won’t consider other cases,
the variational family doesn’t have to be Gaussian. The variational distribution can be a
discrete distribution if we have a posterior distribution over discrete variables.

Kullback–Leibler Divergence

The Kullback–Leiber divergence, usually just called the KL-divergence, is a common measure
of the discrepancy between two distributions:

DKL(p||q) =
∫

p(z) log
p(z)
q(z)

dz.

The KL-divergence is non-negative, DKL(p||q)≥0, and is only zero when the two distribu-
tions are identical.

The divergence doesn’t satisfy the formal criteria to be a distance, for example, it isn’t
symmetric: DKL(p||q) 6= DKL(q||p).

Minimizing DKL(p||q)
To minimize DKL(p||q) we set the variational parameters m and V to match the mean and
covariance of the target distribution p. The illustration below shows an example from the
notes on Bayesian logistic regression. The Laplace approximation is poor on this example:
the mode of the posterior is very close to the mode of the prior, and the curvature there is
almost the same as well. The Laplace approximation will set the approximate posterior to be
almost equal to the prior. While the posterior is clearly not a Gaussian, matching the mean
and variance of the posterior is a better summary of where the plausible parameters are
than the Laplace approximation:
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1. The textbooks often avoid parameterizing q in their presentations of variational methods. Instead they describe
the optimization problem as being on the distribution q itself, using the calculus of variations. We don’t need such
a general treatment in this course.
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Optimizing DKL(p(w | D)||q(w; α)) tends to be difficult. The cost function is an expectation
under the complicated posterior distribution that we are trying to approximate, and we
usually can’t evaluate it.

Even if we could find the mean and covariance of our distribution (approximating them
would be possible) the answer may not be sensible. Matching the mean of a bimodal
distribution will find an approximation centred on implausible parameters:

Our predictions are not likely to be sensible if we mainly use parameters that are not
plausible given the data.

Minimizing DKL(q||p)

Most variational methods in Machine Learning minimize DKL(q(w; α)||p(w | D)), partly be-
cause we are better at optimizing this cost function. (There are also other sensible variational
principles, but we won’t cover them in this course.) Minimizing the KL-divergence this way
around encourages the fit to concentrate on plausible parameters:

DKL(q(w; α)||p(w | D)) =
∫

q(w; α) log
q(w; α)

p(w | D) dw

= −
∫

q(w; α) log p(w | D) dw +
∫

q(w; α) log q(w; α) dw︸ ︷︷ ︸
neg. entropy, −H(q)

To make the first term small, we avoid putting probability mass on implausible parameters.
As an extreme example, there is an infinite penalty for putting probability mass of q on a
region of parameters that are impossible given the data. The second term is the negative
entropy of the distribution q.2 To make the second term small we want a high entropy
distribution, one that is as spread out as possible.

Minimizing this KL-divergence usually results in a Gaussian approximation that finds one
mode of the distribution, and spreads out to cover as much mass in that mode as possible.
However, the distribution can’t spread out to cover low probability regions, or the first term
would grow large. See Murphy Figure 21.1 for an illustration.

If we substitute the expression for the posterior from Bayes’ rule,

p(w | D) = p(D |w) p(w)

p(D) ,

into the KL-divergence, we get a spray of terms:

DKL(q||p) = Eq[log q(w)]−Eq[log p(D |w)]−Eq[log p(w)]︸ ︷︷ ︸
J(q)

+ log p(D).

The first three terms, equal to J(q) in Murphy, depend on the variational distribution (or
its parameters), so we minimize these terms. The final term, log p(D) is the log-marginal

2. H is the standard symbol for entropy, and has nothing to do with a Hessian (also H; sorry!).
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likelihood (also known as the “model evidence”). Knowing that the KL-divergence is non-
negative gives us a bound on the marginal likelihood:

DKL(q||p) ≥ 0 ⇒ log p(D) ≥ −J(q).

Thus, fitting the variational objective is optimizing a lower bound on the log marginal
likelihood. Recently “the ELBO” or “Evidence Lower Bound” has become a popular name
for −J(q).

Optimization methods for DKL(q||p)

The literature is full of clever (non-examinable) iterative ways to optimize DKL(q||p) for
different models.

Could we use standard optimizers? The hardest term to evaluate is:

Eq[log P(D |w)] =
N

∑
n=1

Eq[log P(y(n) | x(n), w)],

which is a sum of (possibly simple) integrals. In the last few years variational inference has
become dominated by stochastic gradient descent, which updates the variational parameters
using unbiased approximations of the variational cost function and its gradients.

Overview of Gaussian approximations
Laplace approximation:

• Straightforward to apply

• 2nd derivatives⇒ certainty of parameters

• Incremental improvement on MAP estimate

• Approximation of marginal/model likelihood

Variational methods:

• Optimization: fit variational parameters of q (not w!)

• Usually KL(q||p), not KL(p||q)

• Bound of marginal/model likelihood

• Optimization: traditionally harder to apply. Now becoming automatic as well.

Non-examinable: Information theory
The KL-divergence gives the average storage wasted by a compression system that encodes
a file based on model q instead of the optimal distribution p. MacKay’s book is the place to
read about the links between machine learning and compression.
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