
Bayesian logistic regression and Laplace approximations
So far we have only performed Bayesian inference in two particularly tractable situations:
1) a small discrete problem (the card game); and 2) “linear-Gaussian models”, where the
observations are linear combinations of variables with Gaussian beliefs, to which we add
Gaussian noise.

For most models, we cannot compute the equations for Bayesian prediction exactly. Logistic
regression will be our working example. We’ll look at how Bayesian predictions differ
from regularized maximum likelihood. Then we’ll look at approximate computation of the
integrals, starting with the Laplace approximation.

Logistic regression

As a quick review, the logistic regression model gives the probability of a binary label given
a feature vector:

P(y=1 | x, w) = σ(w>x) = 1/(1 + e−w>x).

We usually add a bias parameter b to the model, making the probability σ(w>x+b). Although
often it’s dropped from the presentation, knowing that it can always be added back in, or
included in w by including a constant element in the input features x.

You’ll see various notations used for the training data D. The model gives the probability of
a vector of outcomes y associated with a matrix of inputs X (where the nth row is x(n)>).
Maximum likelihood fitting maximizes the probability:

P(y |X, w) = ∏
n

σ(z(n)w>x(n)), where z(n) = 2y(n)−1, if y(n) ∈ {0, 1}.

For simplicity we’ll write this likelihood as P(D |w), even though really only the outputs y
in the data are modelled. The inputs X are assumed fixed and known.

Logistic regression is most frequently fitted by a regularized form of maximum likelihood.
For example L2 regularization fits an estimate

w∗ = arg max
w

[
log P(y |X, w)− λw>w

]
.

We find a setting of the weights that make the training data appear probable, but discourage
fitting extreme settings of the weights, that don’t seem reasonable. (Usually the bias weight
will be omitted from the regularization term.)

Just as with simple linear regression, we can instead follow a Bayesian approach. The weights
are unknown, so predictions are made considering all possible settings, weighted by how
plausible they are given the training data.

Bayesian logistic regression

The posterior distribution over the weights is given by Bayes’ rule:

p(w | D) = P(D |w) p(w)

P(D) ∝ P(D |w) p(w).

The normalizing constant is the integral required to make the posterior distribution integrate
to one:

P(D) =
∫

P(D |w) p(w) dw.

The figures below1 are for five different plausible sets of parameters, sampled from the pos-
terior p(w | D).2 Each figure shows the decision boundary σ(w>x)=0.5 for one parameter
vector as a solid line, and two other contours given by w>x=±1.

1. The two figures in this section are extracts from Figure 41.7 of MacKay’s textbook (p499). Murphy’s Figures 8.5
and 8.6 contain a similar illustration.
2. It’s not obvious how to generate samples from p(w | D), and in fact it’s hard to do exactly. These samples were
drawn approximately with a “Markov chain Monte Carlo” method.

MLPR:w8a Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 1

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

The axes in the figures above are the two input features x1 and x2. The model included a bias
parameter, and the model parameters were sampled from the posterior distribution given
data from the two classes as illustrated. The arrow, perpendicular to the decision boundary,
illustrates the direction and magnitude of the weight vector.

Assuming that the data are well-modelled by logistic regression, it’s clear that we don’t
know what the correct parameters are. That is, we don’t know what parameters we would
fit after seeing substantially more data. The predictions given the different plausible weight
vectors differ substantially.

The Bayesian way to proceed is to use probability theory to derive an expression for the
prediction we want to make:

P(y | x,D) =
∫

p(y, w | x,D) dw

=
∫

P(y | x, w) p(w | D) dw.

That is, we should average the predictive distributions P(y | x, w) for different parameters,
weighted by how plausible those parameters are, p(w | D). Contours of this predictive
distribution, P(y=1 | x,D) ∈ {0.5, 0.27, 0.73, 0.12, 0.88}, are illustrated in the left panel below.
Predictions become certain less quickly when moving away from the decision boundary
when further away from the training inputs. That’s because the different predictors above
disagreed in regions far from the data.

(a)

0 5 10

0

5

10

(b)

0 5 10

0

5

10

0 5 10

0

5

10

Again, the axes are the input features x1 and x2. The right hand figure shows P(y=1 | x, w∗)
for some fitted weights w∗. No matter how these fitted weights are chosen, the contours
have to be linear. The parallel contours mean that the uncertainty of predictions falls at the
same rate when moving away from the decision boundary, no matter how far we are from
the training inputs.

It’s common to describe L2 regularized logistic regression as MAP (Maximum a posteriori)
estimation with a Gaussian N (0, σ2

w) prior on the weights. The “most probable”3 weights,
coincide with an L2 regularized estimate:

w∗ = arg max
w

[log p(w | D)] = arg max
w

[
log P(D |w)− 1

2σ2
w

w>w
]

MAP estimation is not a “Bayesian” procedure. The rules of probability theory don’t tell us to
fix an unknown parameter vector to an estimate. We could view MAP as an approximation

3. “Most probable” is problematic for real-valued parameters. Really we are picking the weights with the highest
probability density. But those weights aren’t well-defined, because if we consider a non-linear reparameterization of
the weights, the maximum of the pdf will be in a different place. That’s why I prefer to describe estimating the
weights as “regularized maximum likelihood” or “penalized maximum likelihood” rather than MAP.

MLPR:w8a Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 2

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

to the Bayesian procedure, but the figure above illustrates that it is a crude one: the Bayesian
predictions (left) are qualitatively different to the MAP ones (right).

Unfortunately, we can’t evaluate the integral for predictions P(y | x,D) in closed form.
Making model choices for Bayesian logistic regression is also computationally challenging.
The marginal probability of the data, P(D), is the marginal likelihood of the model, which
we might write as P(D |M) when we are evaluating some model choicesM (such as basis
functions and hyperparameters). We also can’t evaluate the integral for P(D) in closed form.

The logistic regression posterior is sometimes approximately Gaussian

We’re able to do some integrals involving Gaussian distributions. The posterior distribution
over the weights p(w | D) is not Gaussian, but we can make progress if we can approximate
it with a Gaussian.

First, I’ve contrived an example to illustrate how the posterior over the weights can look
non-Gaussian. We have a Gaussian prior with one sigmoidal likelihood term. Here we
assume we know the bias4 is 10, and we have one datapoint with y=1 at x=−20:

p(w) ∝ N (w; 0, 1)
p(w | D) ∝ N (w; 0, 1) σ(10− 20w).

We are now fairly sure that the weight isn’t a large positive value, because otherwise we’d
have probably seen y=0. We (softly) slice off the positive region and renormalize to get the
posterior distribution illustrated below:

−4 −2 0 2 4
w

p(w)
p(w |D)

The distribution is asymmetric and so clearly not Gaussian. Every time we multiply the
posterior by a sigmoidal likelihood, we softly carve away half of the weight space in some
direction as less likely. While the posterior distribution has no neat analytical form, the
distribution over plausible weights often does look Gaussian after many observations.

As another example, I generated N = 500 labels, {z(n)}, from a logistic regression model
with no bias and with w=1 at x(n) ∼ N (0, 102). Then,

p(w) ∝ N (w; 0, 1)

p(w | D) ∝ N (w; 0, 1)
500

∏
n=1

σ(wx(n)z(n)), z(n) ∈ {±1}.

The posterior now appears to be a beautiful bell-shape:

−4 −2 0 2 4
w

p(w)
p(w |D)

Fitting a Gaussian distribution (using the Laplace approximation, next section) shows that
the distribution isn’t quite Gaussian. . . but it’s close:

4. Perhaps we have many datapoints from which we have fitted the bias precisely, then we have one datapoint that
has a novel feature turned on, and the example is showing the posterior over the weight that interacts with that one
feature.

MLPR:w8a Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 3

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

−4 −2 0 2 4
w

p(w)
p(w |D)
N (w;w∗,1/H)

The Laplace Approximation

There are multiple ways that we could try to fit a distribution with a Gaussian form. For
example, we could try to match the mean and variance of the distribution. The Laplace
approximation is another possible way to approximate a distribution with a Gaussian. It can
be seen as an incremental improvement of the MAP approximation to Bayesian inference,
and only requires some additional derivative computations.

We can only evaluate the posterior distribution up to a constant: we can evaluate the joint
probability p(w,D), but not the normalizer P(D). We match the shape of the posterior using
p(w,D), and then the approximation can be used to approximate P(D).
The Laplace approximation sets the mode of the Gaussian approximation to the mode of
the posterior distribution, and matches the curvature of the log probability density at that
location. We need to be able to evaluate first and second derivatives of log P(w,D).
The rest of the notes just fills in the details. I’m not adding much to MacKay’s textbook
pp341–342, or Murphy’s book p255. Although I maybe go a little more slowly and show
some pictures of what can go wrong. A concrete example is on Tutorial sheet 7.

Matching the distributions

First of all we find the most probable setting of the parameters:

w∗ = arg max
w

p(w | D) = arg max
w

log p(w,D).

Reminder: why do we take the log?5

We usually find the mode of the distribution by minimizing an ‘energy’, which is the negative
log-probability of the distribution up to a constant. For a posterior distribution, we can
define the energy as:

E(w) = − log p(w,D), w∗ = arg min
w

E(w).

We minimize it as usual, using a gradient-based numerical optimizer.

The minimum of the energy is a turning point. For a scalar variable w the first derivative ∂E
∂w

is zero and the second derivative gives the curvature of this turning point:

H =
∂2E(w)

∂w2

∣∣∣∣
w=w∗

.

The notation means that we evaluate the second derivative at the optimum, w = w∗. If H is
large, the slope (the first derivative) changes rapidly from a steep descent to a steep ascent.
We should approximate the distribution with a narrow Gaussian. Generalizing to multiple

5. As you should know by now: Because log is a monotonic transformation, maximizing the log of a function is
equivalent to maximizing the original function. Often the log of a distribution is more convenient to work with, less
prone to numerical problems, and closer to an ideal quadratic function that optimizers like.

MLPR:w8a Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 4

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

variables w, we know ∇wE is zero at the optimum and we evaluate the Hessian, a matrix
with elements:

Hij =
∂2E(w)

∂wi∂wj

∣∣∣∣∣
w=w∗

.

This matrix tells us how sharply the distribution is peaked in different directions.

For comparison, we can find the optimum and curvature that we would get if our distribution
were Gaussian. For a one-dimensional distribution, N (µ, σ2), the energy (the negative log-
probability up to a constant) is:

EN (w) =
(w− µ)2

2σ2 .

The minimum is w∗ = µ, and the second derivative H = 1/σ2, implying the variance is
σ2 = 1/H. Generalizing to higher dimensions, for a Gaussian N(µ, Σ), the energy is:

EN (w) =
1
2
(w− µ)>Σ−1(w− µ),

with w∗ = µ and H = Σ−1, implying the covariance is Σ = H−1.

Therefore matching the minimum and curvature of the ‘energy’ (negative log-probability) to
those of a Gaussian energy gives the Laplace approximation to the posterior distribution:

p(w | D) ≈ N (w; w∗, H−1)

Approximating the normalizer Z

Evaluating our approximation for a D-dimensional distribution gives:

p(w | D) = p(w,D)
P(D) ≈ N (w; w∗, H−1) =

|H|1/2

(2π)D/2 exp
(
−1

2
(w−w∗)>H(w−w∗)

)
.

At the mode w∗=w, the exponential term disappears and we get:

p(w∗,D)
P(D) ≈ |H|1/2

(2π)D/2 , P(D) ≈ p(w∗,D)(2π)D/2

|H|1/2 .

An equivalent expression is

P(D) ≈ p(w∗,D) |2πH−1|1/2,

where | · | means take the determinant of the matrix.

When some people say “the Laplace approximation”, they are referring to this approximation
of the normalization P(D), rather than the intermediate Gaussian approximation to the
distribution.

Is the approximation reasonable?

If we think that the Energy is well-behaved and sharply peaked around the mode of the
distribution, we might think that we can approximate it with a Taylor series. In one dimension
we write

E(w∗ + δ) ≈ E(w∗) +
∂E
∂w

∣∣∣∣
w∗

δ +
1
2

∂2E
∂w2

∣∣∣∣
w∗

δ2

≈ E(w∗) +
1
2

Hδ2,

MLPR:w8a Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 5

https://en.wikipedia.org/wiki/Taylor_series
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

where the second term disappears because ∂E
∂w is zero at the optimum. In multiple dimensions

this Taylor approximation generalizes to:

E(w∗ + δ) ≈ E(w∗) + 1
2 δ>Hδ.

A quadratic energy (negative log-probability) implies a Gaussian distribution. The distribu-
tion is close to the Gaussian fit when the Taylor series is accurate.

For models with a fixed number of identifiable parameters, the posterior becomes tightly
peaked in the limit of large datasets. Then the Taylor expansion of the log-posterior doesn’t
need to be extrapolated far and will be accurate. Search term for more information: “Bayesian
central limit theorem”.

The Laplace approximation doesn’t always work well!

Despite the theory above, it is easy for the Laplace approximation to go wrong.

In high dimensions, there are many directions in parameter space where there might only
be a small number of informative datapoints. Then the posterior could look like the first
asymmetrical example in this note.

If the mode and curvature are matched, but the distribution is otherwise non-Gaussian, then
the value of the densities won’t match6.

As a result, the approximation of P(D) will be poor.

One way for a distribution to be non-Gaussian is to be multi-modal. The posterior of logistic
regression only has one mode, but the posterior for neural networks will be multimodal.
Even if capturing one mode is reasonable, an optimizer could get stuck in bad local optima.

In models with many parameters, the posterior will often be flat in some direction, where
parameters trade off each other to give similar predictions. When there is zero curvature in
some direction, the Hessian isn’t positive definite and we can’t get a meaningful approxima-
tion.

Further Reading

Suggested reading: Murphy Section 8.4 to 8.4.4 inclusive. You can skip 8.4.2 on BIC.

Similar material is covered by MacKay, Ch. 41, pp492–503, and Ch. 27, pp341–342. (Sec-
tion 41.4 uses non-examinable methods — skim over on first reading.)

6. The final two figures in this note come from previous MLPR course notes, by one of Amos Storkey, Chris
Williams, or Charles Sutton.

MLPR:w8a Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 6

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

	 Bayesian logistic regression and Laplace approximations
	 Logistic regression
	 Bayesian logistic regression
	 The logistic regression posterior is sometimes approximately Gaussian
	 The Laplace Approximation
	 Matching the distributions
	 Approximating the normalizer Z
	 Is the approximation reasonable?
	 The Laplace approximation doesn't always work well!

	 Further Reading

