
Gaussian Processes and Kernels
In this note we’ll look at the link between Gaussian processes and Bayesian linear regression,
and how to choose the kernel function.

Bayesian linear regression as a GP

The Bayesian linear regression model of a function, covered earlier in the course, is a
Gaussian process. If you draw a random weight vector w ∼ N (0, σ2

w I) and bias b ∼ N (0, σ2
b)

from Gaussian distributions1, the joint distribution of any set of function values, each given
by

f (x(i)) = w>x(i) + b,

is Gaussian. If the distributions over the weights are prior beliefs, then we are specifying a
Gaussian process prior on a function.

A Gaussian Process created by a Bayesian linear regression model is degenerate (boring),
because the function has to be linear in x. Once we know the function at (D + 1) input
locations (in general position), we can solve for the weights, and we know the function
everywhere. If we use K basis functions, the function is constrained to be a linear combination
of those basis functions. Knowing the function at only K positions is enough to find the
basis functions’ coefficients and know the function everywhere.

By choosing an appropriate kernel function, we can define Gaussian processes that are more
interesting. The covariance matrices we produce can be full rank, which would mean that
no matter how many function values we see, there would still be more to learn about the
function.

Bayesian linear regression’s kernel

As Bayesian linear regression defines a Gaussian process, there is a corresponding kernel
function that specifies all of the covariances in the model:

f (x(i)) = w>x(i) + b, w ∼ N (0, σ2
wI), b ∼ N (0, σ2

b)

cov(fi, f j) = E[fi f j]−
0︷ ︸︸ ︷

E[fi]E[f j]

= E
[
(w>x(i) + b)>(w>x(j) + b)

]
= σ2

wx(i)>x(j) + σ2
b = k(x(i), x(j)).

The kernel is specified by parameters σ2
w and σ2

b , which are hyperparameters in a Bayesian
hierarchical model — parameters that specify the prior on parameters.

It’s usually more efficient to implement Bayesian linear regression directly, than interpreting
it as a Gaussian process. Although if there are more input features or basis functions than
data-points, using the Gaussian process view is cheaper.

Feature spaces and the kernel trick

We can replace the original features x with a vector of basis function evaluations φ(x) in the
linear regression model. We obtain the kernel:

k(x(i), x(j)) = σ2
wφ(x(i))>φ(x(j)) + σ2

b .

To get arbitrarily complicated functions, we would need an infinite φ vector of features.
Fortunately, all we need to know are inner products φ(x(i))>φ(x(j)) — the feature vector
never occurs by itself in the maths. If we can get the inner products directly, without creating

1. Yes, I’ve just changed notation again; sorry. The prior on weights has also been labelled with variance 1/α and
σ2

prior. I’ll unify this notation for next year.

MLPR:w7c Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 1

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

the infinite feature vectors, we can infer an infinitely complicated model, with a finite amount
of computation.

Replacing an inner product of features with a simple kernel function, corresponding to a
large or infinite set of basis functions, is known as the kernel trick. Some kernels are derived
explicitly as inner products of an infinite collection of basis functions. Moreover, it can
be shown that Mercer kernels, or positive definite kernels, all correspond to taking inner
products in some feature space, which might be infinite.

Several other machine learning algorithms can be expressed in terms of only inner products,
and so can be kernelized. For example PCA can be written using only inner products. Most
famously, a linear classifier known as the Support Vector Machine (SVM) is usually used in
its kernelized version. Gaussian processes are kernelized Bayesian linear regression.

Choosing a family of kernel functions

We can’t just make up any function for k(x(i), x(j)). We have to know that it will always give
positive semi-definite matrices (and usually we want positive definite matrices), so that the
prior on functions is actually a valid Gaussian distribution.

The textbooks have various options, and we won’t go through them all. I’ll briefly highlight
some of the things that are worth knowing.

Going beyond feature vectors: There are kernel functions that can compare two strings or
graphs, and return a covariance. Kernel methods give a flexible means to model functions of
structured objects.

Kernels can be combined in various ways. For example, given two positive definite kernel
functions, a positive combination:

k(x(i), x(j)) = αk1(x(i), x(j)) + βk2(x(i), x(j)), α > 0, β > 0,

is also positive definite. (Can you prove it?)

Kernels can give functions with qualitatively different properties: The examples in these notes
come from Gaussian kernels. The functions from this prior are ridiculously smooth for many
purposes, and other choices may be better. (In high-dimensions you can’t really see any
detail of a function, and the smoothness of the Gaussian kernel probably matters less.)

Kernels usually have parameters. Most kernels have free parameters that change the distribution
over functions. The combination of kernels above introduced two extra parameters α and β.
As explained above, the link to Bayesian linear regression means that these parameters are
often called hyperparameters. Tuning hyperparameters is the main way that we control the
prior of a Gaussian process. The choice of prior strongly affects the model’s generalization
performance for a given amount of data.

Hyperparameters for the Gaussian kernel

The Gaussian kernel can be derived from a Bayesian linear regression model with an infinite
number of radial-basis functions. You might see several other names for the kernel, including
RBF, squared-exponential, and exponentiated-quadratic.

The version below has hyperparameters σf , `d to control its properties,

k(x(i), x(j)) = σ2
f exp

(
− 1

2

D

∑
d=1

(x(i)d − x(j)
d)2/`2

d

)
.

Other kernels have similar parameters, but we will demonstrate their effect just on the
Gaussian kernel.

The marginal variance of one function value fi is:

var[fi] = k(x(i), x(i)) = σ2
f .

MLPR:w7c Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 2

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

The figure below illustrates functions drawn from priors with different marginal variance
(also called “function variance” or “signal variance”) σ2

f :

0 0.2 0.4 0.6 0.8 1

x

-30

-20

-10

0

10

20

f

σ
f
 = 2

σ
f
 = 10

If we saw a long enough stretch of function, then ≈ 2/3 of the points would be within ±σf
of the mean (which is zero in all the figures here). Although we often won’t see really long
stretches of a function.

The number of turning points in the function is random, but controlled by the lengthscale `.
(Some papers refer instead to a “bandwidth” h, as was traditionally used with RBF models,
but is less used with GPs.) As in the equation above, each feature dimension might have its
own lengthscale `d, or there might be a single shared lengthscale `. The plot below illustrates
samples with two different lengthscales:

0 0.2 0.4 0.6 0.8 1

x

-3

-2

-1

0

1

2

f

l = 0.05

l = 0.5

The lengthscale indicates the typical distance between turning points in the function. Often
a good value is comparable to the range of a feature in the training data, because functions
in many regression problems don’t have many turning points.

Learning the hyperparameters

If we have Gaussian observations of the function y, the probability of the data is just a
Gaussian. The log of that probability is the log of the standard multivariate Gaussian pdf:

log p(y |X, θ) = − 1
2 y>M−1y− 1

2 log |M| − N
2 log 2π,

where M = K + σ2
n I, is the kernel matrix evaluated at the training inputs plus the variance

of the observation noise. The model parameters θ are the kernel parameters {`d, σf , . . . },
which control K, and the noise variance σ2

n .

One way to set the parameters is by maximum likelihood: find values that make the obser-
vations seem probable. Gradients of the log-likelihood with respect to the hyperparameters
can be computed, so we can use gradient-based optimizers. Because the GP can be viewed as
having an infinite number of weight parameters that have been integrated out, log p(y |X, θ)
is often called the marginal likelihood.

Optimizing the marginal likelihood of a stochastic process sounds fancy. But all we are doing
is fitting a Gaussian distribution (albeit a big one) to some data, and the marginal likelihood is
just a standard Gaussian pdf. A minimal implementation isn’t much code.

It is quite possible to overfit by fitting the hyperparameters. Regularizing the log noise
variance log σ2

n , preventing it from getting too small, is often a good idea.

A fully Bayesian approach is another way to avoid overfitting. It computes the posterior over
a function value by integrating over all possible hyperparameters:

p(f∗ | y, X) =
∫

p(f∗ | y, X, θ) p(θ | y, X) dθ

MLPR:w7c Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 3

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

However, this integral can’t be computed exactly. The first term in the integrand is tractable.
The second term is the posterior over hyperparameters, which comes from Bayes’ rule, but
requires approximation before we can compute the integral.

Computation cost and limitations

Gaussian processes show that we can build remarkably flexible models and track uncertainty,
with just the humble Gaussian distribution. In machine learning they are mainly used for
modelling expensive functions. But they are also used in a large variety of applications in
other fields (sometimes under a different name).

The main downside to straightforward Gaussian process models is that they scale poorly
with large datasets.

• The O(N3) computation cost usually takes the blame, required to factor the M matrix
above so that we can evaluate the marginal likelihood and make predictions.

• That cost isn’t the only story. Computing the kernel matrix costs O(DN2) and uses
O(N2) memory. Sometimes the covariance computations can be significant, and run-
ning out of memory places a hard limit on problem sizes.

• There is a large literature on special cases and approximations of GPs that can be
evaluated more cheaply.

Not all functions can be represented by a Gaussian process. The probability of a function
being monotonic under any Gaussian process is zero.

Gaussian processes are a useful building block in other models. But as soon as our observa-
tion process isn’t Gaussian, we have to do rather more work to perform inference, and we
need to make approximations.

Check your understanding

Here are questions about the lengthscale parameter(s) `d in the squared exponential kernel.
The answers aren’t explicitly in the notes, you’ll have to think about what the prior model
says, and so reason about what will be imposed on the posterior.

• If a GP uses a kernel with a lengthscale that is too short, what will happen and why?
You don’t need to do maths: sketch what draws from the prior would be like, and use
your intuition to see what posterior samples would look like given a few datapoints.

• What will happen as the lengthscale ` is driven to infinity?

• If a kernel has a different lengthscale `d for each feature-vector dimension, what
happens if we drive one of these lengthscales to infinity?

Further Reading

The readings from the previous note still stand.

Carl Rasmussen has a nice example of how GPs can combine multiple kernel functions to
model interesting functions:
http://learning.eng.cam.ac.uk/carl/mauna/

Some Gaussian process software packages:

• https://github.com/GPflow/GPflow
Uses automatic differentiation and TensorFlow but new and in development.

• http://sheffieldml.github.io/GPy/
More mature Python codebase.

MLPR:w7c Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 4

http://www.inference.phy.cam.ac.uk/mackay/humble.pdf
http://learning.eng.cam.ac.uk/carl/mauna/
https://github.com/GPflow/GPflow
http://sheffieldml.github.io/GPy/
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

• http://www.gaussianprocess.org/gpml/code/matlab/doc/
Nicely structured Matlab code base. (Used in Carl’s demo above.)

• http://becs.aalto.fi/en/research/bayes/gpstuff/
Matlab. Less easy-to-follow code, but implements some interesting things.

• https://github.com/HIPS/Spearmint
Bayesian optimization. Watch out for the license.

Practical tips

As with any machine learning method, the machines can’t do everything for us yet. Visualize
your data. Look for weird artifacts that might not be well captured by the model. Consider
how to encode inputs (one-hot encoding, log-transforms, . . .) and outputs (log-transform?
. . .).

To set initial hyper-parameters, use domain knowledge wherever possible. Otherwise. . .

• Standardize input data and set (initial) lengthscales `d to ∼ 1.

• Standardize targets and set the function variance σ2
f to ∼ 1.

• Sometimes useful: set the initial noise level high, even if you think your data have low
noise. The optimization surface for your other parameters will be easier to move in.

If optimizing hyper-parameters, (as always) random restarts or other tricks to avoid local
optima may be necessary.

Don’t believe any suggestions that maximizing marginal likelihood can’t overfit. It can, so
watch out for it, and consider more Bayesian alternatives.

MLPR:w7c Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 5

http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://becs.aalto.fi/en/research/bayes/gpstuff/
https://github.com/HIPS/Spearmint
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

	 Gaussian Processes and Kernels
	 Bayesian linear regression as a GP
	 Bayesian linear regression's kernel
	 Feature spaces and the kernel trick
	 Choosing a family of kernel functions
	 Hyperparameters for the Gaussian kernel
	 Learning the hyperparameters
	 Computation cost and limitations
	 Check your understanding
	 Further Reading
	 Practical tips

