
Bayesian inference and prediction
The previous note introduced a probabilistic model for regression. Nothing changed when
we did maximum likelihood: we still did least squares. However, Bayesian inference on this
model reveals how uncertain we are about the underlying model. We no longer fit a model
exactly, we constructed a distribution over all possible models. Now we’ll look at how to use
that distribution. But first, a simple concrete prediction problem as a work-up exercise.

A toy prediction problem

In lectures I’ll show you 3 cards, each with two sides: Card 1 has one white and one black
side, card 2 has two black sides, and card 3 has two white sides.

I shuffle the cards and turn them over randomly. I select a card and way-up uniformly at
random and place it on a table.

Question1: You see a black side. What is the probability that the other side of the same card
is white?

P(x2=W | x1=B) = 1/3, 1/2, 2/3, other?

Hopefully the process by which a card is selected should be clear: P(c) = 1/3 for c = 1, 2, 3,
and the side you see first is chosen at random: e.g., P(x1=B|c=1) = 0.5.

Many people get this puzzle wrong on first viewing (it’s easy to mess up). Although
regardless of whether the answer is obvious or not, it’s a simple example on which to
demonstrate some formalism.

When I first tried to use probabilities for prediction problems, I often found myself going in
circles using Bayes’ rule:

P(x2=W | x1=B) =
P(x1=B | x2=W) P(x2=W)

P(x1=B)

The boxed term is no more obvious than the answer! Bayes’ rule can’t be used blindly
to obtain any conditional probability. It is used specifically to ‘invert’ processes that we
understand. The first step to solve inference problems is to write down a model of the data.

A model of the card game states that we first picked one of the three cards uniformly at
random:

P(c) =

{
1/3 c = 1, 2, 3
0 otherwise.

Then given the card, we picked one of the faces at random:

P(x1=B | c) =


1/2 c = 1
1 c = 2
0 c = 3

Bayes rule can ‘invert’ this process to tell us P(c | x1 = B). It infers a posterior distribution
over explanations of how we got the data that we observed.

1. This card problem is Ex. 8.10a), MacKay, p142. It is not the same as the famous “Monty Hall” or “three doors”
puzzle (MacKay Ex. 3.8–9). The Monty Hall problem is also worth understanding. Although the card problem is
(hopefully) less controversial and more straightforward. Also fewer students have seen it before and memorized the
answer.

MLPR:w6c Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 1

http://en.wikipedia.org/wiki/Monty_Hall_problem
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

Inferring the card:

P(c | x1=B) =
P(x1=B | c) P(c)

P(x1=B)

∝


1/2 · 1/3 = 1/6 c = 1
1 · 1/3 = 1/3 c = 2
0 c = 3

=

{
1/3 c = 1
2/3 c = 2.

This unbalanced posterior distribution over cards doesn’t match some people’s intuition.
“Aren’t there two possible cards given a black side, so it’s 50–50?”. While there are two
possible cards, the likelihood for one of these options is 2× larger. Analogy: I pick a dice at
random from a 6-sided dice, a 10-sided dice and a 100-sided dice. I roll the dice and tell you
I got an 8. You know it’s not the 6-sided dice, so there are two options, the 10-sided dice or
the 100-sided dice. But the 10-sided dice is more likely.

We can now spot the answer to the card problem. The other side will be white only if it’s
card 1, and we have now computed the probability representing our belief that we’re looking
at card 1. For more complex problems we want a more mechanical approach.

The probability for predicting the next outcome that we want is P(x2 | x1 = B). We need
to introduce the card c into the maths, so that we can use our model and its posterior
distribution. We use the sum rule to introduce the card choice c as a dummy variable, and
then split up the joint probability with the product rule:

P(x2 | x1=B) = ∑
c∈1,2,3

P(x2, c | x1=B)

= ∑
c∈1,2,3

P(x2 | x1=B, c) P(c | x1=B)

This equation says that we consider each of the predictions that we would make if we knew
the card, and weight it by the posterior probability of that card. (And adding up the options
we get 1/3.)

General strategy for solving prediction problems:

When we want to predict some quantity y, we often find that we can’t immediately write
down mathematical expressions for P(y |data).

So we introduce stuff (model parameters and/or latent variables), z, that helps us define the
problem by using the sum rule:

P(y |data) = ∑
z

P(y, z |data).

If the stuff is real-valued, we’ll have an integral over a PDF instead of a sum over probabilities.
Either way, we split up the joint probability using the product rule:

P(y |data) = ∑
z

P(y | z, data) P(z |data).

If we would know how to predict y if we were told the extra stuff z, we can find the predictive
distribution: weight the predictions for each possible stuff, P(y | z, data), by the posterior
probability of the stuff, P(z |data). We get the posterior from Bayes’ rule.

Sometimes the extra stuff summarizes everything we need to know to make a prediction:
P(y | z, data) = P(y | z). Although not in the card game example above.

MLPR:w6c Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 2

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

Not convinced?

Not everyone believes the answer to the card game question. Sometimes probabilities are
counter-intuitive. Here is an Octave/Matlab simulator I wrote for the card game question:

cards = [1 1;
0 0;
1 0];

num_cards = size(cards, 1);

N = 0; % Number of times first side is black
kk = 0; % Out of those, how many times the other side is white

for trial = 1:1e6
card = ceil(num_cards * rand());
side = 1 + (rand < 0.5);
other_side = (side==1) + 1;
x1 = cards(card, side);
x2 = cards(card, other_side);

if x1 == 0
N = N + 1; % just seen another black face
kk = kk + (x2 == 1); % count if other side was white

end
end

approx_probability = kk / N

An implementation without the for loop would probably be faster, but here I wanted to
convince you, so didn’t want the code to be at all cryptic.

Predictions for Bayesian linear regression
Compared to the statistics literature, the machine learning literature places a greater emphasis
on prediction than inferring unknown parameters. Here we explore how to make a Bayesian
prediction given a posterior over the parameters.

The prediction of an unknown output y at a test location x is expressed as a probability. We
condition on training data D = {x(n), y(n)}. We want to refer to our model, in particular its
regression weights, so we introduce them using the sum rule:

p(y | x,D) =
∫

p(y, w | x,D) dw.

Then we split up the joint probability using the product rule:

p(y | x,D) =
∫

p(y | x, w) p(w | D) dw.

Here the first term isn’t conditioned on the data, because if we know the parameters, the
data doesn’t help make the prediction. The second term isn’t conditioned on the test input
location, because we assume the test location doesn’t tell us anything about the weights2.

What are the probabilities in this integral? As explained in the previous note, the posterior
over the weights is Gaussian for a linear regression model with Gaussian noise. Following
Murphy’s notation, I’ll write:

p(w | D) = N (w; wN , VN),

2. Non-examinable: There are transductive learning systems that do base inferences on the locations of test inputs.

MLPR:w6c Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 3

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

where wN is the posterior mean after observing N datapoints, and VN is the posterior covari-
ance. The other term in the integrand is the predictive distribution for known parameters.
That is, a Gaussian with noise variance σ2 centred around the function value for the test
input:3

p(y | x, w) = N (y; w>x, σ2).

So now we ‘just’ need to do the integral and we have our answer.

Only a little probability theory is needed for Bayesian inference and prediction in this course:
just the sum and product rule. We follow the rules in the general strategy above. However,
actually solving the sums or integrals required is usually hard.

Linear and Gaussian models are one of the rare cases where we can do the integrals in
closed form. Multiplying the terms in the integrand together, and carefully tracking terms
we can factor out a Gaussian in w that integrates to 1. A Gaussian in y remains. It’s some
work, but can be done.

Noticing that our predictive distribution is Gaussian, we can look for an easier way to
identify its mean and variance. The test output is a noisy version of the underlying function:

y = f (x) + ν = x>w + ν, ν ∼ N(0, σ2).

The function value is a linear transformation of the weights, so our beliefs about the function
value are Gaussian distributed with mean:

µ f = E[x>w] = x>wN

and variance4

var[f] = x>VNx.

So our belief about the function value is:

p(f | D, x) = N (f ; x>wN , x>VNx).

Our belief about the output is also Gaussian. The independent zero mean noise doesn’t
change the mean, but adds σ2 to the variance:

p(y | D, x) = N (y; x>wN , x>VNx + σ2).

This answer matches the answer quoted for the integral in Murphy.

Reading
Murphy covers prediction for Bayesian linear regression: Section 7.6.2 and Figure 7.12.

Check your understanding
MacKay’s book has more toy prediction exercises like the card game: Ex. 3.12 and 3.14, p58.
You might have intuitive answers, but try to solve them mechanically by writing down an
explicit model and applying rules of probability.

What happens to the uncertainty of predictions as x grows large. Why?

3. I’m assuming that the noise level σ2 is part of our general background knowledge. I won’t consider different
values or infer σ2 in this note, so I haven’t bothered to explicitly condition on it in any of the probabilities.
4. var[f] = E[(f − µ f)(f − µ f)] = E[x>(w−wN)(w−wN)

>x] = x>cov[w]x

MLPR:w6c Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 4

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

More detail for those who love linear algebra
A brute force way to get the predictive distribution for linear regression is to write the
integrand as a joint distribution, as a standard multivariate Gaussian using block matrices:

p(w, y | x,D) = N
([

w
y

]
;
[

wN
µy

]
,
[

VN Σw,y
Σy,w σ2

y

])
.

Written is this form, the marginal mean and variance of y are immediately available, and
we’d write p(y | x,D) = N (y; µy, σ2

y). But if you find that intimidating, I agree! Examining
the quadratic form involving y and w in the joint distribution gives us the joint inverse
covariance, and we need to do quite a few lines of linear algebra to identify µy = x>wN and
σ2

y = x>VNx + σ2. That seems like a lot of work. Sources like the matrix cookbook can help.
But in this case there was an easier way.

MLPR:w6c Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 5

http://www2.imm.dtu.dk/pubdb/p.php?3274
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

	 Bayesian inference and prediction
	 A toy prediction problem
	 General strategy for solving prediction problems:
	 Not convinced?

	 Predictions for Bayesian linear regression
	 Reading
	 Check your understanding
	 More detail for those who love linear algebra

