Netflix Prize

In 2006 Netflix was just a mail-based DVD rental company (they weren’t streaming videos
yet). Customers with a subscription could rent as many DVDs as they liked, and Netflix
wanted to keep posting DVDs to their customers. People who weren’t using the service
would realize, and cancel their subscription. Netflix kept up demand by recommending
movies their customers would like, and they had data showing that better personalized
recommendations led to higher customer retention. To improve recommendations further,
Netflix launched a challenge — with a million dollar prize — to improve the root mean
square error of their recommendation engine by 10%.

The rules of the competition and FAQ are still online if you want more detail. Much of
how the competition was set up was well thought out. The way the leaderboard works, and
limitations on the number of submissions, was since adopted in much the same form by
Kaggle’s competitions. As we'll see, they didn’t give enough thought to privacy.

Wikipedia has a good, short summary: https://en.wikipedia.org/wiki/Netflix_Prize

SVD approach

One of the most significant approaches to the competition was referred to as “SVD”. Simon
Funk, one of the competitors, beat Netflix's existing system early on with a short and simple
C program, which performed stochastic gradient descent on a simple model.

The model stated that the C x M matrix of movie ratings for the C customers and M movies
approximately decomposed, like a truncated SVD, into the product of a tall thin Cx K matrix
and a short wide Kx M matrix. There’s no need to have SVD’s intermediate diagonal matrix,
which can be absorbed into the other matrices. Because the matrix M isn’t fully observed, a
conventional SVD routine doesn’t apply. However, one can attempt to minimize the sum of
the square differences between the approximation of the matrix and the observed matrix
at the observed elements by stochastic gradient descent on the rectangular matrices. The
approximate matrix can then be evaluated at any cell, giving predictions for ratings that
haven’t been observed.

One of the matrices contains K learned features about each customer. The other contains K
learned features about each movie. The inner product of these features is used to predict
the customer’s rating of a movie. One of the K indexes might correspond to “romance”:
the corresponding customer feature will take on large values if the customer likes romantic
movies, and the movie feature will take on large values if it is a romantic movie. In this
model customers can like multiple genres of movie, and no other customer has to have the
same combination of tastes for the system to work. No genre labels are required to fit the
model though: the fitting procedure learns the features for itself.

Rather than expand further, some of the successful Netflix competitors wrote a great and
accessible article, fleshing out the details: Matrix factorization techniques for recommender
systems, Koren et al., IEEE Computer 42(8):30-37, 2009.

More methods and the winning ensemble

Restricted Boltzmann Machines (RBMs) are a type of neural network, although unlike the
feedforward networks we have covered in this course, they have random values for hidden
units. A prediction system based on RBMs, along with many other methods, were also tried
on the Netflix challenge. They didn’t beat tuned combinations of SVD models. However,
they made different mistakes. Averaging predictions from RBM- and SVD-based systems
did better than either system alone.

In fact, the final winning entry used a large ensemble (collection) of many different methods,
and an elaborate way to form the ensemble. Netflix did adopt variants of SVD and RBMs,
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but the performance gains of the full ensemble system weren’t worth adopting in their
production system. Effort was better spent addressing the needs of their new streaming
services.

The Netflix challenge nicely demonstrated how far you can get with the right baseline system.
It also demonstrated that there is a lot of room for creativity in machine learning: there
were many different approaches to the same problem, none of which are fundamentally and
uniquely “right”.

Competitions and well-defined shared tasks can be useful for validating methods: there was
a lot of skepticism from some parts of the community about RBMs — but an independent
competition showed they really worked. Although there are also limits to the usefulness of
challenges. When reaching the limits of what’s possible, highly engineered solutions are
required to make small improvements, and the resulting large systems may not actually be
practical.

Some commentators suggested that the challenge was a “failure” because Netflix didn’t
adopt the final winning entry. I doubt Netflix saw it that way — they rapidly got a lot of
immediately useful “free” consulting and publicity. Although Netflix probably does have
one regret. ..

The privacy fall-out

The Netflix data gave an anonymous unique identifier to each customer, and the real names
and release dates of each movie. Apart from that, the data just defined a sparse matrix with
ratings for a subset of customer-movie pairs. I'll admit that in 2006 I didn’t see any reason
why releasing this data could be a problem. This was what Netflix said in their FAQ:

“Is there any customer information in the dataset that should be kept private?

No, all customer identifying information has been removed; all that remains are ratings
and dates. This follows our privacy policy, which you can review here. Even if, for
example, you knew all your own ratings and their dates you probably couldn’t identify
them reliably in the data because only a small sample was included (less than one-tenth
of our complete dataset) and that data was subject to perturbation. Of course, since you
know all your own ratings that really isn’t a privacy problem is it?"

— http://www.netflixprize.com/faq.html

I'll also admit that I didn’t even understand why they were bothering to “perturb the
dataset”, which meant they randomly changed some of the ratings from their true values.
How could this data possibly be deemed sensitive?

Firstly, anonymizing data doesn’t work if an adversary might have access to other data that
they can correlate with your data. In this case the freely-available Internet Movie Database
(IMDB) contains movie ratings. It was possible to identify some people in the Netflix prize
data, by comparing patterns of ratings to those found in IMDB.

The IMDB ratings are public already though, so how has any harm been done? Well users
of IMDB know that it is public, and so may choose not to rate movies of a certain political
or sexual persuasion. However, the Netflix dataset did contain ratings of political and
pornographic movies. By matching users to IMDB, some of these sensitive ratings were
attached to identifiable individuals. Not surprisingly, the relevant people were upset, and
some of them took legal action. The wikipedia article on the Netflix Prize has more details
and references.

Any scientific study (including your projects) should consider ethical issues, including
privacy, before it begins. Anything involving potentially-sensitive data (amongst other issues)
requires some thought and oversight. Companies also have a duty of care to their customers
and wider society. The Netflix prize shows how easy it is to incorrectly dismiss data as not
possibly sensitive.
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For keen students: A seminal paper on privacy is: Differential privacy, Cynthia Dwork, Pro-
ceedings of the 33rd International Colloquium on Automata, Languages and Programming,
2006. — Differential privacy is a theoretical framework for data-releasing mechanisms that
are resistant to all possible attacks from adversaries with arbitrary side-information. There is
recent and ongoing work on applying it to machine learning.

Whether Netflix could have really run their competition under the constraints of differential
privacy is unclear. It's possible they could have explored social rather than technological
solutions: getting people to donate their data. But that approach would not be without its
challenges either.
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