
Neural networks introduction
Linear models and generalized linear models (logistic regression et al.) are easy to fit. Least
squares linear regression has a direct solution (unless the number of parameters is huge).
The other variants can be fitted with gradient descent, and logistic/softmax regression has a
convex cost function1, so we can find the global optimum.

I like linear models. If I were consulting, and thought that a linear model would solve a
problem, that’s the way I’d go. The code would be simple. And the results would be fairly
reproducible because I could get the same fit every time if I used a good optimizer. I might
have to think about how to transform the inputs and outputs to make the linear model work
(“feature engineering”), which may not be cool or glamorous, but is often effective.

Neural networks fit parameters for a series of stages of computation, not just a single weight
vector. The result is that we can learn more interesting functions, given enough data. But
fitting these parameters is harder; for a start the cost function will not be convex.

We’ve already seen a neural net, we just didn’t fit it

We’ve already fitted non-linear functions. We simply transformed our original inputs x into
a vector of basis function values φ before applying a linear model. For example we could
make each basis function a logistic sigmoid:

φk(x) = σ((v(k))>x + b(k)),

and then take a linear combination of those to form our final function:

f (x) = w>φ(x) + b, or f (x) = σ(w>φ(x) + b).

Here I’ve chosen to put in bias parameters in the final step, rather than adding a constant ba-
sis function. This function is a special case of “neural network”. In particular a “feedforward
(artificial) neural network”, or “multilayer perceptron”.

The function has many parameters θ = {{v(k), b(k)}K
k=1, w, b}. What really makes it a neural

network is fitting all of these parameters θ to data. Rather than placing basis functions by
hand, we pick the family of basis functions, and “learn” the locations and any other parame-
ters from data. A neural network “learning algorithm”, is simply an optimization procedure
that fits the parameters to data, usually (but not always) a gradient-based optimizer fitting a
cost function.

Why is it called a neural network?

[A quick sloppy interlude — non-examinable]

Why is it called a neural network? The term neural network is rooted in these models’
origins as part of connectionism — models of intelligent behaviour that are motivated by
how processes could be structured, but usually abstracted far from the biological details we
know about the brain. An accurate model of neurons in the brain would involve large sets
of stochastic differential equations; not smooth, simple, deterministic functions.

There is some basis to the neural analogy. There is electrical activity within a neuron. If a
voltage (“membrane potential”) crosses a threshold, a large spike in voltage called an action
potential occurs. This spike is seen as an input by other neurons. A neuron can be excited
or depressed to varying degrees by other neurons (it weights its inputs). Depending on the
pattern of inputs to a neuron, it too might fire or might stay silent.

In early neural network models, a unit computed a weighted combination of its input w>x.
The unit was set to one if this weighted combination of input spikes reached a threshold
(the unit spikes), and zero otherwise (the unit remains silent). The logistic function φk(x)
is a soft version of that original step function. We use a differentiable version of the step
function so we can fit the parameters with gradient-based methods.

1. If cost E(w) is convex, then a straight line between two points on the function never goes below the surface:
E(αw + (1−α)w′) ≤ αE(w) + (1−α)E(w′), where 0 ≤ α ≤ 1. It’s a stronger statement than “unimodal”, and makes
optimization a lot easier. There are whole books on convex optimization: http://stanford.edu/~boyd/cvxbook/
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Some neural network terminology, and standard processing layers

In the language of neural networks, a simple computation that takes a set of inputs and
creates an output is called a “unit”. The basis functions in our neural network above are
“logistic units”. The units before the final output of the function are called “hidden units”,
because they don’t correspond to anything we observe in our data. The feature values
{x1, x2, . . . xD} are sometimes called “visible units”.

In the neural network model above, the set of φk basis functions all use the same inputs x,
and all of the basis function values go on together to the next stage of processing. Thus these
units are said to form a “layer”. The inputs {x1, x2, . . . xD} also form a “visible layer”, which
is connected to the layer of basis functions.

The layers in simple feed-forward neural networks apply a linear transformation, and then
apply a non-linear function elementwise to the result. To compute a layer of hidden values
h(l) from the previous layer h(l−1):

h(l) = g(W(l)h(l−1) + b(l)),

where each layer has a matrix of weights W(l), a vector of biases b(l), and uses some non-
linear function g, such as a logistic sigmoid g(a)=σ(a), or a Rectified Linear Unit (ReLU)
g(a)= log(1 + ea). We can define h(0)=x so that the first hidden layer takes input from the
features of our data. Then we can add as many layers of processing we like before combining
the final layer into the final output of our function.

Implementing the function defined by a standard neural network is very little code! A
sequence of linear transformations (matrix multiplies and maybe the addition of a bias
vector), and element-wise non-linearities.

Recall why we need non-linearities if we’re going to define our function in terms of multiple
layers of processing. (See tutorial 1.) Choosing which non-linearities to use, amongst other
details, is ultimately somewhat of an empirical science. Different choices can be theoretically
motivated, but what cross-validates the best is what ultimately wins in practice.

Fitting and initialization

Neural networks are almost always fitted with gradient based optimizers, such as variants
of Stochastic Gradient Descent. I will defer how we compute the gradients to a future note.

How do we set the initial weights before calling an optimizer? Don’t set all the weights to
zero! If different hidden units (adaptable basis functions) start out with the same parameters,
they will all compute the same function of the inputs. Each unit will then get the same
gradient vector, and be updated in the same way. As each hidden unit remains the same, we
can’t fit anything much more interesting than logistic regression.

Instead we usually initialize the weights randomly. Don’t simply set all the weights using
randn() though! As a concrete example, if all your inputs were xd ∈ {−1,+1} the activation
(w(k))>x to hidden unit k would have zero mean, but typical size

√
K if there are K hidden

units. (See the review of random walks on the expectations sheet.) If your units saturate, like
the logistic sigmoid, most of the gradients will be close to zero, and it will be hard for the
gradient optimizer to update the parameters to useful settings.

Summary: initialize the weights to small random values, like 0.1*randn()/sqrt(K), assuming
your input features are ∼ 1.

More advanced neural network architectures have particular tricks for initializing them. Do
a literature search if you find yourself trying something ambitious. Or (pragmatically) if you
are using a neural network toolbox, try to process your data to have similar properties to the
standard datasets that are usually used to demonstrate that software. Then any initialization
tricks the software uses are more likely to work.

MLPR:w4b Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 2

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/


Further reading

MacKay’s textbook Chapter 39 is on the “single neuron classifier”. The classifier described in
this chapter is precisely logistic regression, but described in neural network language. Maybe
this alternative view will help.

Murphy’s quick description of Neural Nets is in Section 16.5, which is followed by a literature
survey of other variants.

If you want to read more about biological neural networks and theoretical models of how
they learn, I recommend Theoretical Neuroscience by Dayan and Abbott.
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