
Programming in Matlab/Octave or Python
I will give code snippets in Matlab and Python during the course. All Matlab examples will
also work in the largely-compatible free package Octave. You are expected to become familiar
with one of Matlab/Octave or Python, and use it to check your understanding through the
course, and for the assessed assignment. Sometimes I will only give demonstrations with
Matlab/Octave. If you wish to use Python, you will need to work out more by yourself
(although I’m happy to answer questions if you’re genuinely stuck).

Why Matlab/Octave: If you don’t have much programming experience, you are likely to have
fewer problems getting started with Matlab or Octave. The language is simpler than the
combination of Python and its scientific libraries, and the base install of Matlab or Octave
will do everything you need for this course. I usually prefer giving Matlab/Octave examples,
as they tend to be quicker to set up, and make fewer assumptions about your installation.
Although Python+NumPy is neater for some types of calculation.

Why Python: Python is good for writing larger programs, and accessing large machine
learning frameworks like TensorFlow, Theano, or Keras. If you know Python well, or have
lots of programming experience, you will probably want to work with Python. Personally
I’m using it more and more in my research. However, you’ll probably have to do more work
to get set up, and you’ll have to learn to routinely import some modules as outlined below.

Other languages? Languages like R or Lua (with Torch), are also sensible choices for machine
learning. I’m not personally used to the quirks in the R language, however it has a large
collection of well-documented statistical packages in CRAN, and is a good choice if you
primarily want to use existing statistical toolboxes. If you want to write compiled code,
you might look at using the C++ library Eigen. If you learn the principles of array-based
computation for machine learning with Matlab or Python, you should be able to rapidly
generalize to whatever tool you need to use in the future.

Getting started with Matlab/Octave
Matlab and Octave are both installed for your use on the Informatics DICE computer system.
You could purchase a Matlab student license to use Matlab on your own machine. You can
obtain a free personal MATLAB license from the university for your own machine. However,
I recommend first trying the free software Octave, which will do everything you need for
this course and you don’t need to fiddle about with licenses.

You should work through a tutorial that covers creating vectors and matrices, evaluating
expressions containing matrices and vectors, basic plotting (line graphs, histograms), and
basic programming constructs (for loops, and functions). Suitable tutorials include:

• Cambridge Engineering Octave tutorial

• The Mathwork’s own Matlab tutorial

The Mathworks also have more extensive online training, which would normally cost money,
but you can access with an Edinburgh University email address. Warning: Mathworks like to
encourage you to use their toolboxes (so they will sell more toolbox licenses in future). In this
class you will need to understand the fundamentals and be able to implement algorithms
from scratch (from linear algebra primitives), rather than learning how to use some toolbox
of pre-packaged machine-learning routines.

Optional extra, for keen students:

• Outline notes on writing fast Matlab/Octave code

Matlab/Octave datatypes

Something that makes Matlab/Octave simple for beginners is that when you start out, every
variable will be a matrix, or a 2-dimensional array of numbers. If you say “xx = 3.14”, then

MLPR:w0e Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 1

http://www.ed.ac.uk/information-services/computing/desktop-personal/software/main-software-deals/matlab/matlab-homeuse
http://www-h.eng.cam.ac.uk/help/programs/octave/tutorial/
http://uk.mathworks.com/help/matlab/getting-started-with-matlab.html
https://trainingenrollment.mathworks.com/selfEnrollment?code=8KJS1UFDZGV8
http://homepages.inf.ed.ac.uk/imurray2/compnotes/matlab_octave_efficiency.html
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/


xx is a 1×1 matrix, which you can confirm with “size(xx)”. Similarly, a column vector
“yy = randn(3,1)”, is a 3×1 matrix. In contrast, Python distinguishes between vectors and
2-dimensional arrays. In fact, Python makes many more subtle distinctions (sketched later),
which you need to have some awareness of if you use Python.

The second Matlab/Octave type you are likely to need are “cell arrays”. These are arrays that
can contain matrices (and other types) of different sizes. These might be useful for grouping
together all of the parameters of a model. You can create cell arrays with curly braces or the
cell() function, for example: “Z = {randn(3,3), randn(2,1)}”. You would access the first
matrix using a curly-braced index: Z{1}. You’ll rarely want Z(1), with round brackets, which
returns a cell array of length one, containing the first matrix.

Getting started with Python
Python and its associated scientific libraries are installed on the Informatics DICE system.
However, these packages change quickly, and DICE is likely to have older versions than you
would install on your own machine.

If installing on your own machine, I recommend trying the Anaconda distribution, unless the
package manager you normally use to install software has well-maintained Python packages.
Some software distributions come with fairly old Python packages, whereas Anaconda
usually “just works”. Whatever route you take, you’ll want at least Python, NumPy, SciPy,
and matplotlib. Either Python 2 or Python 3 is ok (more below).

If you don’t already know the basics of Python, you should probably just start out with
Octave instead. Otherwise you’d first have to find a Python tutorial at your level, and work
through it. The official Python tutorial is a good start. (You don’t need the more advanced
topics, like classes, or to work through all the standard library examples.) Then you would
need to learn the NumPy and matplotlib libraries. Again, there are many tutorials online.
You might start with the official quickstart guide. For more, you could work through some
of http://www.scipy-lectures.org/, which aims to be “One document to learn numerics,
science, and data with Python”.

I use Python interactively from the ipython command-line program. From there you can
type %paste to run code in the clipboard, or use the %run command to run code stored
in a file. If you get an error, you can use %debug to enter a debugger. If you start ipython
with ipython --pylab then plotting works smoothly: there’s no need for show() commands,
and plot windows don’t cause the interpreter to hang. The pylab environment also imports
commonly-used functions like plot() into the top level, so you can use it more like Matlab.

Those that like a graphical environment could try Spyder.

Ipython or Jupyter notebooks are becoming popular, and are used in the MLP course. I’ve
chosen not to create notebooks for this course because these tools are still changing quickly.
Getting everyone running the right version could take a lot of time, and I don’t want to rely
on a central server, which you wouldn’t be able to access after the course is over. However, if
you like the notebook interface, feel free to use it yourself.

Commonly-used Python modules

If you use Python you will use NumPy extensively. The standard way to use this module is
import numpy as np

Then some example code would be:
A = np.random.randn(3, 3)
matrix_product = np.dot(A, A) # simply "A @ A" with python >=3.5

I might not always specify the import line in my Python examples, but you’ll need it if my
code refers to np.something. Similarly if I refer to plt, a Matlab-like plotting interface, you’ll
need to import it as follows:

MLPR:w0e Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 2

https://www.continuum.io/downloads
https://docs.python.org/3/tutorial/
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
http://www.scipy-lectures.org/
http://pythonhosted.org/spyder/
http://www.numpy.org/
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/


import matplotlib.pyplot as plt

Some people reduce the amount of typing they need to do with:
from numpy import *
from matplotlib.pyplot import *

which means code can directly call functions like dot() and plot() without a “np.” or “plt.”
prefix. Ready access to the functions is convenient for interactive use, but importing a large
set of functions is usually considered poor practice in “real code”. For example Python’s
sum() and max() and NumPy’s np.sum() and np.max() could become confused with each
other, which can lead to subtle bugs.

Python/NumPy Arrays, matrices, vectors, lists, tuples, . . .

One reason that numerical computation with Python is more complicated for beginners than
Matlab is the larger number of types you have to deal with immediately.

Python’s usual tuple and list types don’t provide convenient array-based arithmetic
operations. For example

xx = [1, 2, 3] # python list
print(xx*3) # prints [1, 2, 3, 1, 2, 3, 1, 2, 3]
print((1,2) + (3,4)) # prints (1, 2, 3, 4)

You will use the list or tuple types to initialize NumPy arrays, and also as containers of
NumPy arrays of different shapes (like Matlab’s cell arrays).

NumPy has a “matrix” type (created with np.matrix), which I strongly recommend you
avoid completely (as does the wider NumPy community). Standard practice is to use NumPy
arrays for all vectors, matrices, and larger arrays of numbers. Attempting to mix NumPy
matrix and array types in your code is likely to lead to confusion and bugs.

One way to ensure you’re dealing with NumPy arrays is to convert to them at the top of
functions you write:

def my_function(A):
A = np.array(A) # does nothing if A was already a numpy array
N, D = A.shape # now works if A was originally a list of lists

Unlike Matlab, NumPy distinguishes between scalars, vectors, and matrices. If you’re going
to use NumPy, you should know (or work out) what the following code outputs, and why:

A = np.random.randn(3, 2)
print(A.shape)
print(np.sum(A,1).shape)
print(np.sum(A).shape)

If some NumPy code expects an array of shape (N,), a vector of length N, it might not work
if you give it an array of shape (N,1) or (1,N) (and vice-versa). You can convert between
vectors and 2D arrays using np.reshape, np.ravel(), and indexing tricks.

Python 2 vs Python 3

Python 2 support is due to end in 2020, so most people will need to migrate to Python 3
sooner or later. I often use Python 3 for my personal code, and you may wish to do the
same. Unfortunately, when working with others, things often have to move more slowly. As
OpenAI state, many machine learning researchers are still using Python 2, and that’s what
is currently best supported on the Informatics DICE system.

I’ve tried to make all my code examples work in both Python 2 and Python 3.

The main change in Python 3 is Unicode string handling, which isn’t relevant for the sort
of code we’ll write in this course. The minor issue you’ll have to deal with in practice is
avoiding Python 2 print statements:

print "Hello World!" # Python 2 code that will crash in Python 3

MLPR:w0e Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 3

https://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html#array-or-matrix-which-should-i-use
https://openai.com/blog/infrastructure-for-deep-learning/
https://openai.com/blog/infrastructure-for-deep-learning/
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/


Add parenthesis around the string as follows:
print("Hello World!") # Works in both Python 2 and Python 3

Replace any more complicated Python 2 print statements with Python 3 style print functions.
Then you can add a magic import line at the top of your code to make them work in Python 2
as well. For example:

from __future__ import print_function

print('thing1', 'thing2', sep=', ')

Python 3.5 comes with a matrix multiply operator, so you can write A @ B instead of
np.dot(A, B). However, there is no easy way to get the @ operator in earlier versions of
Python, so I’ll try to remember to use np.dot in my examples.

MLPR:w0e Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 4

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

	 Programming in Matlab/Octave or Python
	 Getting started with Matlab/Octave
	 Matlab/Octave datatypes

	 Getting started with Python
	 Commonly-used Python modules
	 Python/NumPy Arrays, matrices, vectors, lists, tuples, …
	 Python 2 vs Python 3


