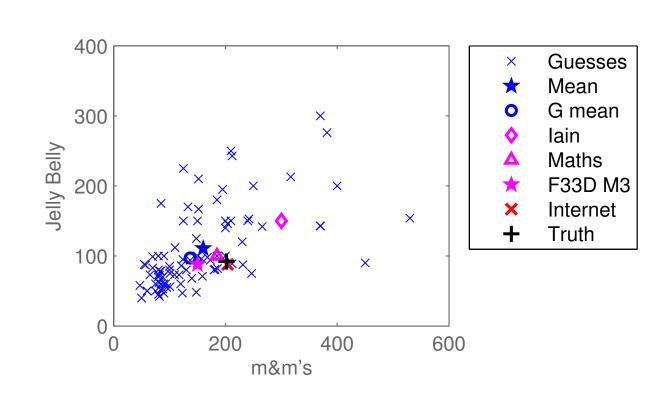
The confection

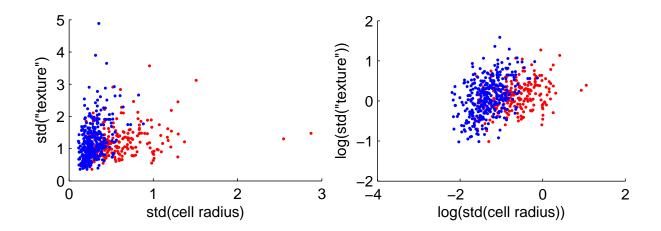
m&m's (185g) Jelly Belly (100g)


Chocolate Raisins (200g)

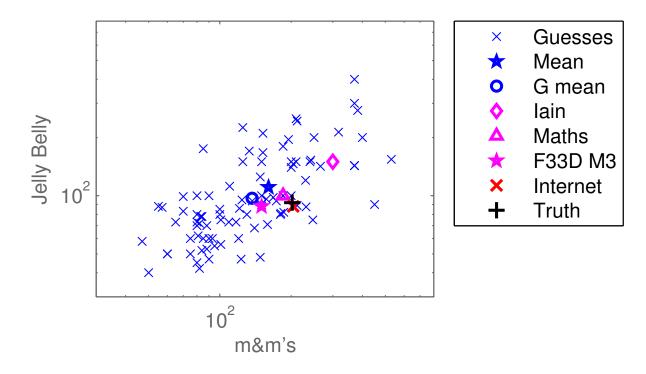
The importance of guessing

http://StreetFightingMath.com/

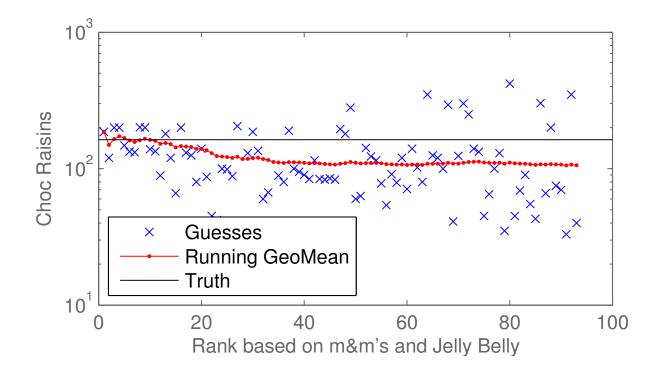
Stuff Inf2b students wrote


Number M&Ms: 14 12 204 Number Jelly Belly: 146 Num. choc-raisin blobs: 47	Number M&Ms: Number Jelly Belly: Num. choc-raisin blobs:	Number M&Ms: 9° Number Jelly Belly: 40 Num. choc-raisin blobs: 40 Of the litely the director of all other Full name: guesses
Number M&Ms: 577 585 Number Jelly Belly: 78 180 Num. choc-raisin blobs: 567 190	Number M&Ms: 150 452 202 82 Number Jelly Belly: 40 - 42 Num. choc-raisin blobs: 150 132 102	(to award prize only) Number M&Ms: 231.25 Number Jelly Belly: 27.5
Number M&Ms: #58 240 Number Jelly Belly: #6440 150 Num. choc-raisin blobs: #6 130	Number M&Ms: 14, 20, 20, 168 Number Jelly Belly: 98 Num. choc-raisin blobs: MMS, 39	Num. choc-raisin blobs: 133, 34 Full name: (to award prize only)
Number M&Ms: 94 424 247 Number Jelly Belly: 53 75 Num. choc-raisin blobs: 94 89	Number M&Ms: ### 54 Number Jelly Belly: ### 52 Num. choc-raisin blobs: ### 133	$p = 1 \frac{9}{6n3}$ $p = \sqrt{7} \frac{2}{6n3}$ $p = \sqrt{7} \frac{2}{6n3}$ $p = \sqrt{7} \frac{2}{6n3}$ $m \le n = p = \sqrt{2}$ $\frac{127}{7} = \frac{127}{7}$
	- F33) M3	1 V - 1 - 1 - 1 - 1 - 1

A 2D space


For 3D and more, check out the code on the website.

Often log-transform +ve data


Wisconsin breast cancer data UCI ML repository

Count guesses on log-scale

Were some people just lucky?

Ranking by past performance

Ensemble of Models

Ensembles can reduce overfitting and con Freduce underfitting

Build complicated fr from scriple

proces

Eq of () Bayesian model averaging: $p(y | \underline{x}, p) = \int p(y | \underline{x}, \underline{w}) p(\underline{w} | p) d\underline{w}$ $\approx \frac{1}{5} \sum_{s=1}^{5} p(y | \underline{x}, \underline{w}^{(s)}) \underline{w}^{(s)} p(\underline{w} | p)$ $\prod_{s=1}^{7} p(y | \underline{x}, \underline{w}^{(s)}) \underline{w}^{(s)} p(\underline{w} | p)$

What about making point prediction or guesses? Kæggle quie you a loss fr $L(\hat{g}; y) = (\hat{g} - y)^2 \text{ or } |\hat{g} - y|$ quess Canquer Then minimize expected loss: Minimize Epigix, D) [L(ý; y)] $= \int p(y|x, p) \mathcal{L}(\hat{y}; y) dy$ For square error: $\hat{y} = mean of p(y|x,0)$ or Epigis, D) [y] For absolute error: \Rightarrow $\hat{y} = median of p(y|x, D)$

Another Lot averaging predictions : Bagging Boots tomp aggregatio You have a dataset of N examples Train time for s = 1 ... S Create a new dataset of Nexamples by sampling with replacement from training set. (Bootstrap) Test time Fit your model -> predictor s Average predictions of Smodels

Bogging / Bayesian arswer Model combination Model combination use model 2 Model Combination predictor/engerts $p(y|x, \theta) = \sum_{\substack{T \in \mathcal{R}, \theta \\ params}} p(y|x, z=k, \theta) p(z=k|x, \theta)$ $p(y|x, z=k, \theta) p(z=k|x, \theta)$ $p(y|x, \theta) = \sum_{\substack{T \in \mathcal{R}, \theta \\ params}} p(y|x, z=k, \theta) p(z=k|x, \theta)$ ke{1,2,...3 "Mixture of experts" Fit 9, Max. Likelihood, + regularize. Bayesian > Loplace / Var opprox of p(010, -> Or Bagging. I showed you Bucilà et al. and Cornana et al. papers. See links in notes.