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1. Given a dataset {(xn, yn), n = 1, . . . , N}, where yn ∈ {0, 1}, logistic regression uses the model p(yn =
1|xn) = σ(wT xn + b). Assuming that the data is drawn independently and identically, show that the
derivative of the log likelihood L of the data is

∇wL =
N∑

n=1

(
yn − σ

(
wT xn + b

))
xn.

HINT: show that
dσ(z)
dz

= σ(z)(1− σ(z)).

2. Consider a dataset {(xn, yn), n = 1, . . . , N}, where yn ∈ {0, 1}, and x is a D dimensional vector.

(a) Data is linearly separable if the two classes can be completely separated by a hyperplane. Show that
if the training data is linearly separable with the hyperplane wT x+ b, the data is also separable with
the hyperplane w̃T x + b̃, where w̃ = λw, b̃ = λb for any scalar λ > 0.

(b) What consequence does the above result have for maximum likelihood training of logistic regression
for linearly separable data?

3. Consider a Bayesian linear regression model. Let

y = mx+ η

η ∼ N (0, σ2)

m ∼ N (0, τ2)

Assume that σ2 and τ2 are known. Note that to simplify the problem we have assumed that there is no
x intercept. Identify the distributions of the following quantities under this model. (Merely identifying
the family of distribution and its parameters is fine, e.g. Uniform(0, τ). You do not need to write down
the pdf.)

(a) What is p(y|x = 1)?

(b) Let y1 equal the value of y when x = 1, i.e., y1 = m + η. What is the joint distribution p(y1,m)?
Hint: Use the following facts

• For any random variable Z, we have Var(Z) = E[Z2] when E[Z] = 0.

• For any random variables Y and Z, if Y and Z are independent, Cov(Y,Z) = 0.

• For any random variables Y and Z, if E[Y ] = 0 and E[Z] = 0, then Cov(Y,Z) = E[Y Z].

(c) What is the posterior p(m|y1 = 1)? Hint: Use what we did in Tutorial 1 with the bivariate Gaussian.
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4. (Murphy, 8.7) Consider the following data set

(a) Suppose that we fit a logistic regression model, i.e., p(y = 1|x,w) = σ(w0 + w1x1 + w2x2). Suppose
we fit the model by maximum likelihood, i.e., we minimize

J(w) = −`(w,Dtrain),

where −` is the logarithm of the likelihood above. Suppose we obtain the parameters ŵ. Sketch a
possible decision boundary corresponding to ŵ.

Is your answer unique? How many classification errors does your method make on the training set?

(b) Now suppose that we regularize only the w0 parameter, i.e., we minimize

J0(w) = −`(w,Dtrain) + λw2
0.

Suppose λ is a very large number, so we regularize w0 all the way to 0, but all other parameters are
unregularized. Sketch a possible decision boundary. How many classification errors does your method
make on the training set? Hint: consider the behaviour of simple linear regression, w0 +w1x1 +w2x2

when x1 = x2 = 0.

(c) Now suppose that we regularize only the w1 parameter, i.e., we minimize

J1(w) = −`(w,Dtrain) + λw2
1.

Again suppose λ is a very large number. Sketch a possible decision boundary. How many classification
errors does your method make on the training set?

(d) Now suppose that we regularize only the w2 parameter, i.e., we minimize

J2(w) = −`(w,Dtrain) + λw2
2.

Again suppose λ is a very large number. Sketch a possible decision boundary. How many classification
errors does your method make on the training set?
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