PCA: Principal Component Analysis
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PCA: Principal Component Analysis

— Xproj
— =V(:,1)

Code assuming X is zero-mean

% Find top K principal directions:
[V, E] = eig(X’*X);

[E,id] = sort(diag(E),1,’descend’);
= V(:, 1id(1:K)); % DxK

% Project to K-dims:
X_kdim = X*V; % NxK

% Project back:
X_proj = X_kdim * V’; 7% NxD



PCA applied to bodies

Freifeld and Black, ECCV 2012



PCA applied to DNA

Novembre et al. (2008) — doi:10.1038/nature07331

Carefully selected both individuals and features

1,387 individuals

197,146 single nucleotide polymorphisms (SNPs)

Each person reduced to two(!) numbers with PCA
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MSc course enrollment data

Binary S x C' matrix M
M. =1, if student s taking course c

Each course is a length S vector

... OR each student is a length C vector



PCA applled to I\/ISc courses
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PCALapIpIiled to MS; stludlenlts
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Truncated SVD

2

% PCA via SVD,
% for zero-mean X:

[U, S, V] = svd(X,

U =U(, 1:K);
S = S(1:K, 1:K);
V =V(, 1:K);
X_kdim = UxS;
X_proj = UxS*V’;

0);




PCA summary

Project data onto major axes of covariance

X "X is covariance if make data zero mean

L ow-dim coordinates can be useful:
— visualization

— If can’t cope with high-dim data

Can project back into original space:
— detall is lost: still in K-dim subspace

— PCA minimizes the square error



PPCA: Probabilistic PCA
Gaussian model: ¥ = WW ' + 21

W is Dx K, o small = nearly low-rank

W is also orthogonal

As 02 — 0, recover PCA.

Need 0% > 0 to explain data

Special case of factor analysis: ¥ = WW '+ &, with ® diagonal



Dim reduction in other models

Can replace x with Ax in any model
A is a K x D matrix of projection params
Large D: a lot of extra parameters

NB: Neural nets already have such projections



Practical tip

Scale features to have unit variance

Equivalently: find eigenvectors of correlation rather than covariance

Avoids issues with (arbitrary?) scaling.
If multiply feature by 10°, PC points along that feature

E.g., if change unit of feature from metres to nanometres



