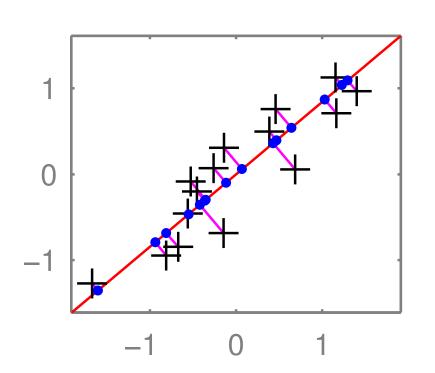
PCA: Principal Component Analysis

Iain Murray

http://iainmurray.net/

PCA: Principal Component Analysis



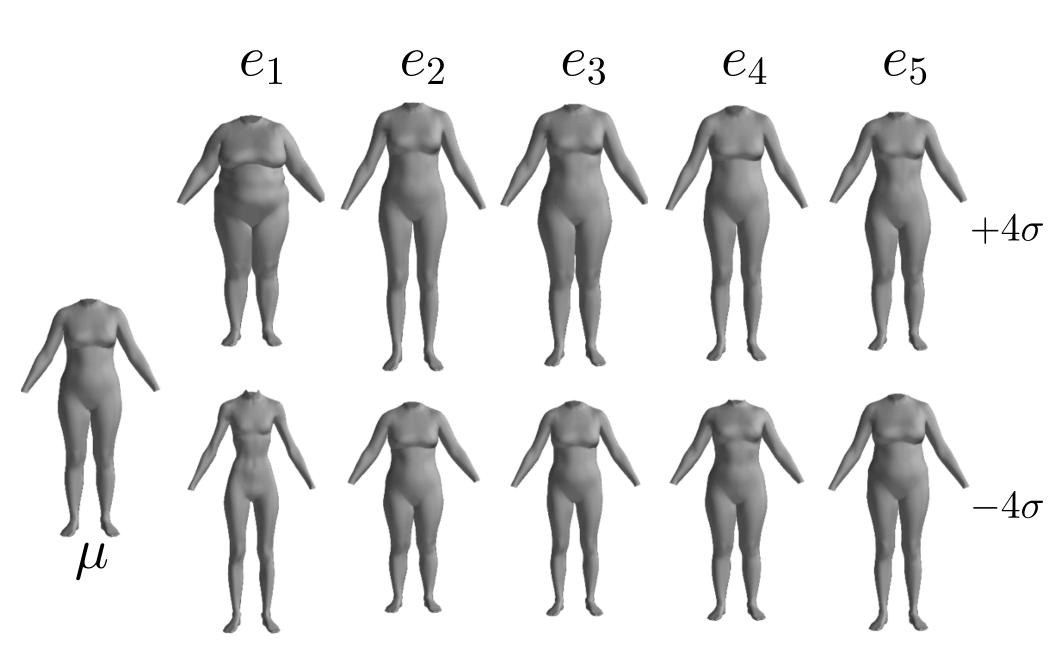
Code assuming X is zero-mean

```
% Find top K principal directions:
[V, E] = eig(X'*X);
[E,id] = sort(diag(E),1,'descend');
V = V(:, id(1:K));  % DxK

% Project to K-dims:
X_kdim = X*V;  % NxK

% Project back:
X_proj = X_kdim * V';  % NxD
```

PCA applied to bodies



Freifeld and Black, ECCV 2012

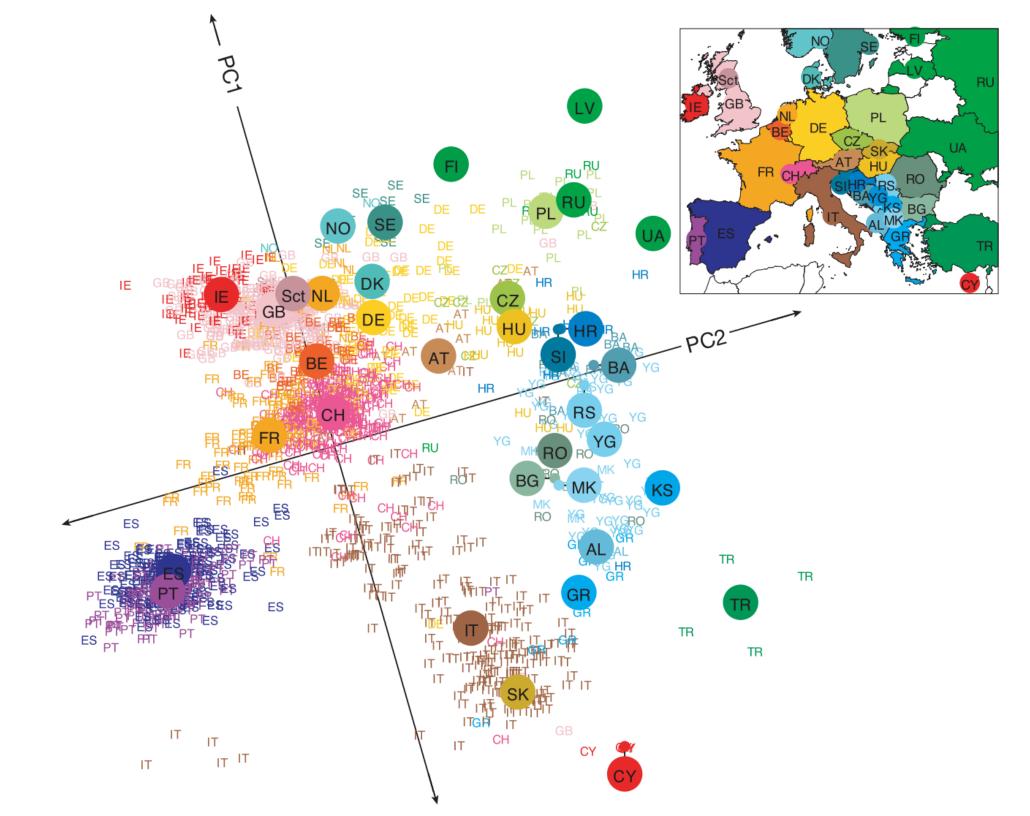
PCA applied to DNA

Novembre et al. (2008) — doi:10.1038/nature07331 Carefully selected both individuals and features

1,387 individuals

197,146 single nucleotide polymorphisms (SNPs)

Each person reduced to two(!) numbers with PCA



MSc course enrollment data

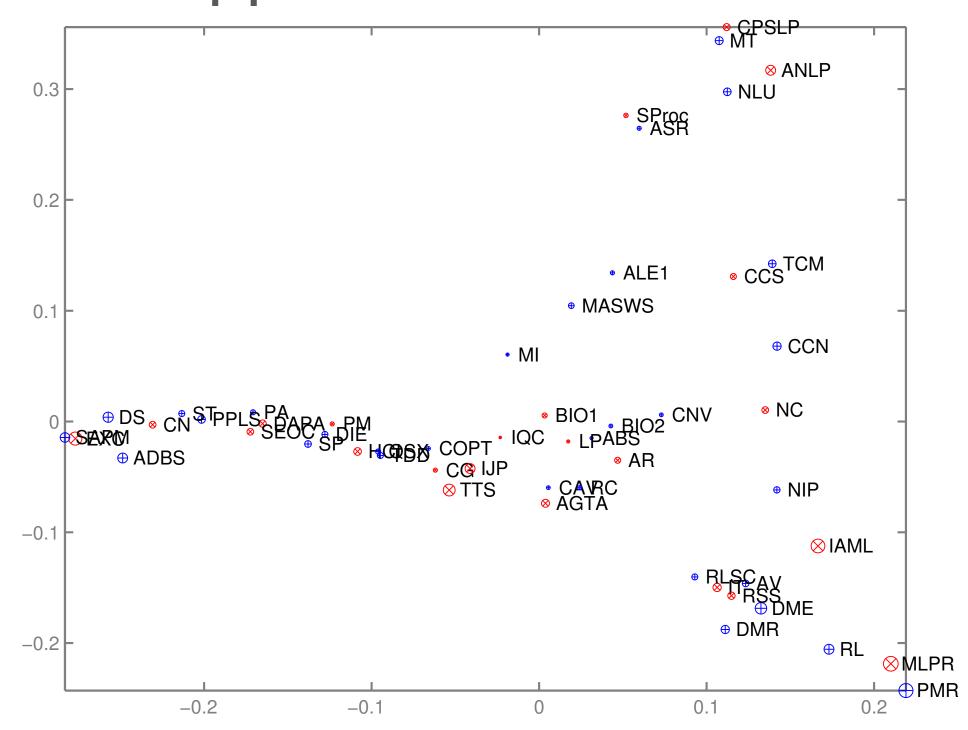
Binary $S \times C$ matrix M

 $M_{sc} = 1$, if student s taking course c

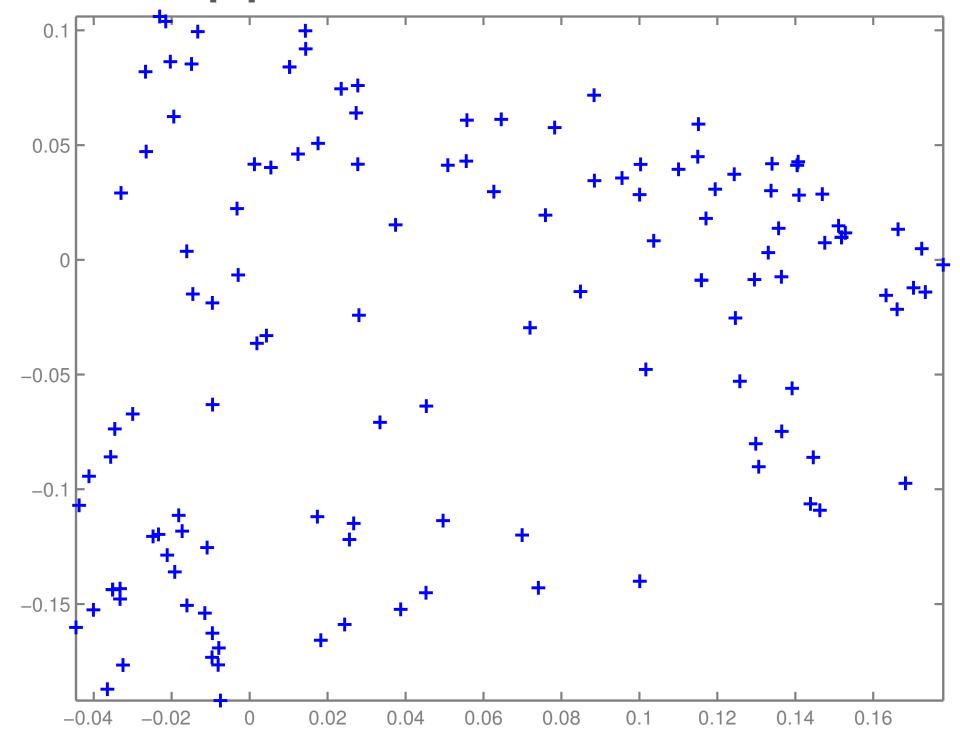
Each course is a length S vector

 \ldots OR each student is a length C vector

PCA applied to MSc courses



PCA applied to MSc students



Truncated SVD

```
% PCA via SVD,
% for zero-mean X:
[U, S, V] = svd(X, 0);
U = U(:, 1:K);
S = S(1:K, 1:K);
V = V(:, 1:K);
X_kdim = U*S;
X_proj = U*S*V';
```

```
 \begin{bmatrix} U_{11} & \cdots & U_{1K} \\ U_{21} & \cdots & U_{2K} \\ U_{31} & \cdots & U_{3K} \\ \end{bmatrix} \begin{bmatrix} S_{11} & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & S_{KK} \end{bmatrix} \begin{bmatrix} V_{11} & V_{21} & \cdots & V_{D1} \\ \vdots & \vdots & \ddots & \vdots \\ V_{1K} & V_{2K} & \cdots & V_{DK} \end{bmatrix}
```

 $X \approx U$

S

 $V^{ op}$

PCA summary

Project data onto major axes of covariance $X^{T}X$ is covariance if make data zero mean

21 21 15 COvariance in make data zero mear

Low-dim coordinates can be useful:

- visualization
- if can't cope with high-dim data

Can project back into original space:

- detail is lost: still in K-dim subspace
- PCA minimizes the square error

PPCA: Probabilistic PCA

Gaussian model: $\Sigma = WW^{\top} + \sigma^2 I$

W is $D \times K$, σ^2 small \Rightarrow nearly low-rank W is also orthogonal

As $\sigma^2 \to 0$, recover PCA.

Need $\sigma^2 > 0$ to explain data

Special case of factor analysis: $\Sigma = WW^{\top} + \Phi$, with Φ diagonal

Dim reduction in other models

Can replace ${\bf x}$ with $A{\bf x}$ in any model

A is a $K \times D$ matrix of projection params

Large D: a lot of extra parameters

NB: Neural nets already have such projections

Practical tip

Scale features to have unit variance

Equivalently: find eigenvectors of correlation rather than covariance

Avoids issues with (arbitrary?) scaling.

If multiply feature by 10^9 , PC points along that feature

E.g., if change unit of feature from metres to nanometres