Optimization

Machine Learning and Pattern Recognition

Chris Williams

School of Informatics, University of Edinburgh

October 2015

(These slides have been adapted from previous versions by Charles Sutton, Amos

Storkey, David Barber, and from Sam Roweis (1972-2010))

32

Outline

v

v

v

v

Unconstrained Optimization Problems

» Gradient descent
» Second order methods

Constrained Optimization Problems
> Linear programming
» Quadratic programming
Non-convexity
Reading: Murphy 8.3.2, 8.3.3, 8.5.2.3, 7.3.3.
Barber A.3, A4, A5 uptoend Ab.1, Ab.7, 17.4.1 pp

379-381.

)

S

Why Numerical Optimization?

» Logistic regression and neural networks both result in
likelihoods that we cannot maximize in closed form.

» End result: an “error function” E(w) which we want to
minimize.

» Note argminf(x) = argmax — f(x)

» e.g., E(w) can be the negative of the log likelihood.

» Consider a fixed training set; think in weight (not input)
space. At each setting of the weights there is some error
(given the fixed training set): this defines an error surface in
weight space.

» Learning = descending the error surface.

E(w)

Role of Smoothness

If £ completely unconstrained, minimization is impossible.

E(W)
‘\
w

All we could do is search through all possible values w.

Key idea: If E is continuous, then measuring E(w) gives
information about F at many nearby values.

Role of Derivatives

» Another powerful tool that we have is the gradient

OE OFE oE

ey

VE = ()"

81111 ’ 811)27 ' 8wD

» Two ways to think of this:

» Each 5= says: If we wiggle wy and keep everything else the
same, does the error get better or worse?
» The function

f(w) = E(wo) + (w — wo) ' VE|w,

is a linear function of w that approximates E well in a
neighbourhood around wy. (Taylor's theorem)
» Gradient points in the direction of steepest error ascent in
weight space.

Numerical Optimization Algorithms

» Numerical optimization algorithms try to solve the general
problem
min F(w)
w

» Different types of optimization algorithms expect different
inputs

» Zero-th order: Requires only a procedure that computes F(w).
These are basically search algorithms.
First order: Also requires the gradient VE
Second order: Also requires the Hessian matrix VVE
High order: Uses higher order derivatives. Rarely useful.
Constrained optimization: Only a subset of w values are legal.

vV vy VvYy

» Today we'll discuss first order, second order, and constrained
optimization

6/32

Optimization Algorithm Cartoon

» Basically, numerical optimization algorithms are iterative.
They generate a sequence of points

Wo,W1,W2o,...
E(wo), E(w1), E(ws), ...
VE(Wo), VE(Wl), VE(WQ), e

» Basic optimization algorithm is

initialize w

while E(w) is unacceptably high
calculate g =VE
Compute direction d from w, E(w), g

(can use previous gradients as well...)

w—w-—-nd

end while

return w

Gradient Descent

» Locally the direction of steepest descent is the gradient.

» Simple gradient descent algorithm:

initialize w

while E(w) is unacceptably high
calculate g «— g—g
W W—ng

end while

return w

» 1) is known as the step size (sometimes called learning rate)
» We must choose 1 > 0.
» 7 too small — too slow
> 71 too large — instability

Effect of Step Size

Goal: Minimize
E(w) = w?

E(w)

» Take n = 0.1. Works well.

wg = 1.0

w) =wg — 0.1:-2wy =0.8
wo = w1 —0.1-2w; =0.64
wg = wg — 0.1 2wy = 0.512

waos — 0.0047

Effect of Step Size

» Take n = 1.1. Not so good. If you

Goal: Minimize step too far, you can leap over the

E(w) = w? region that contains the minimum
o wo = 1.0
T wy =wp—1.1-2wp = —1.2
. wy =wi1 — 1.1-2w; =1.44
2 w3y =Wy — 1.1 2wy = —1.72
o |
S a0 1 2 s wys = 79.50

> Finally, take n = 0.000001. What
happens here?

10/32

Batch vs online

>

So far all the objective functions we have seen look like:
n
E(w; D) = ZE"(W; Yy, x").
n=1

D = {(x',yY), (x%,4?),...(x",y™)} is the training set.
Each term sum depends on only one training instance
The gradient in this case is always

OE N OE"

ow ot ow

The algorithm on slide 8 scans all the training instances
before changing the parameters.

Seems dumb if we have millions of training instances. Surely
we can get a gradient that is “good enough” from fewer
instances, e.g., a couple thousand? Or maybe even from just
one?

11/32

Batch vs online

vV v v Y

Batch learning: use all patterns in training set, and update
weights after calculating

o8 _ - o
ow _n:1 ow

On-line learning: adapt weights after each pattern

presentation, using %%

Batch more powerful optimization methods
Batch easier to analyze
On-line more feasible for huge or continually growing datasets

On-line may have ability to jump over local optima

Algorithms for Batch Gradient Descent

» Here is batch gradient descent.
initialize w
while E(w) is unacceptably high

N 9E™
n=1 Ow

calculate g < >
W—W-—10¢g
end while
return w

» This is just the algorithm we have seen before. We have just
“substituted in" the fact that £ = ZnN:1 E".

13 /32

Algorithms for Online Gradient Descent

» Here is (a particular type of) online gradient descent algorithm

initialize w
while F(w) is unacceptably high

Pick j as uniform random integer in 1... N

OEI

calculate g «— 5o~

W—w—ng
end while
return w

» This version is also called “stochastic gradient ascent”
because we have picked the training instance randomly.

» There are other variants of online gradient descent.

14 /32

Problems With Gradient Descent

» Setting the step size 1
» Shallow valleys
» Highly curved error surfaces

» Local minima

15 /32

Shallow Valleys

>

Typical gradient descent can be fooled in several ways, which
is why more sophisticated methods are used when possible.
One problem:

Gradient descent goes very slowly once it hits the shallow
valley.

One hack to deal with this is momentum
d; = pd;—1 + (1 = B)nVE(wy)

Now you have to set both 1 and 3. Can be difficult and
irritating.

16

32

Curved Error Surfaces

» A second problem with gradient descent is that the gradient
might not point towards the optimum. This is because of
curvature

» Note: gradient is the locally steepest direction. Need not
directly point toward local optimum.

» Local curvature is measured by the Hessian matrix:
Hij = 62E/8wle
» By the way, do these ellipses remind you of anything?

17 /32

Second Order Information

» Taylor expansion
1
E(w+0)~ E(w)+ 8" VyE+ 5<STH5

where
0’E

H.. —
Y 8wi8wj

» H is called the Hessian.

» If H is positive definite, this models the error surface as a
quadratic bowl.

18 /32

Quadratic Bowl

19/32

Direct Optimization

» A quadratic function

E(w) = %WTHW +blw

can be minimised directly using
w=—-H b

but this requires

» Knowing/computing H, which has size O(D?) for a
D-dimensional parameter space
» Inverting H, O(D?3)

20 /32

Newton's Method

v

Use the second order Taylor expansion

E(w +8) ~ E(w) + 6TV E + %6TH5

v

From the last slide, the minimum of the approximation is
0*=—-H 'V\E

Use that as the direction in steepest descent

v

This is called Newton's method.

v

v

You may have heard of Newton's method for finding a root,
i.e., a point x such that f(z) = 0. Similar thing, we are
finding zeros of Vf.

v

Compare Newton step to gradient descent § = —nV F

Advanced First Order Methods

>

Newton's method is fast in that once you are close enough to
a minimum.
What we mean by this is that it needs very few iterations to
get close to the optimum (You can actually prove this if you
take an optimization course)
If you have a not-too-large number of parameters and
instances, this is probably method of choice.
But for most ML problems, it is slow. Why? How many
second derivatives are there?
Instead we use “fancy” first-order methods that try to
approximate second order information using only gradients.
These are the state of the art for batch methods
» One type: Quasi-Newton methods (I like one called limited
memory BFGS).
» Conjugate gradient
» We won't discuss how these work, but you should know that
they exist so that you can use them.

N
N

S

Constrained problems

» Constraints: e.g. f(w) < 0.

» Example: Observe the points {0.5,1.0} from a Gaussian with
known mean p = 0.8 and unknown standard deviation o.
Want to estimate o by maximum likelihood.

» Constraint: o must be positive.
» In this case to find the maximum likelihood solution, the

optimization problem is

subject to o > 0

In this case: solution can be done analytically. More complex
cases require a numerical method for constrained optimization.

Constrained problems

Either remove constraints by re-parameterization. E.g. w > 0. Set
¢ = log(w). Now ¢ unconstrained.

Or use a constrained optimization method, e.g. for linear
programming, quadratic programming.

24 /32

Linear Programming

» Find optimum, within a (potentially unbounded) polytope, of
a linear function

» Polytope = polygon or higher dimensional generalization
thereof.

» Easy: maximum (if it exists) must be at vertex of polytope (or
on a convex set containing such a vertex). Hill climb on
vertices using an adjacency walk (Simplex algorithm)

Quadratic Programming

» Find optimum, within a (potentially unbounded) polytope, of
a quadratic form

» Interior point methods, Active set methods.

» Second order methods for convex quadratic functions
Newton-Raphson, Conjugate Gradient variants.

» A number of machine learning methods are cast as quadratic
programming problems (e.g. Support Vector Machines).

Non-convexity and local minima

» If you follow the gradient, where will you end up? Once you
hit a local minimum, gradient is 0, so you stop.

\

error

parameter space

» Certain nice functions, such as the likelihood for linear and
logistic regression are convex, meaning that the second
derivative is always positive. This implies that any local
minimum is global.

Dealing with local minima: Train multiple models from
different starting places, and then choose best (or combine in
some way).

No guarantees. Unrealistic to believe this will find global
mimimum.

» Local minima occur, e.g. for neural networks

> Bayesian interpretation, where E(w) = —log p(w|D)

Finding local minima of E(w) as a way of approximating
integration over the posterior by finding local maxima of
p(w|D)

Convex Functions

> A function f: R? — R is convex if for a € [0, 1]

flax+ (1 —a)y) < af(x)+ (1 —a)f(y)

Essentially “bowl shaped”

» Examples:

fla)=a® fl@)=—logz f(x)=1log (Zexp{xd})
d

» If f differentiable, this implies

f(x0) + (x = x0) "V flx, < f(%)

for all x and xq. (To see this: take limit of above as x — y.)

» This implies that any local minimum is a global one!

Convex Optimization Problems

» A convex optimization problem is one that can be written as

min fo(x)
subject to f;(x) <0 ie{l...N}

for some choice of functions fj ... fy where each f; is convex
» Optimise convex function over a convex set...

» Unconstrained problems: Use methods from before. You'll
find a global optimum!

» Convexity means any local optimum is also global optimum.

» Constrained convex problems: Interior point methods, Active
set methods.

» Most convex optimization problems can be solved efficiently in
practice.

» (How high a scale you can reach depends on the type of
problem you have)

30/32

Optimization: Summary

» Complex mathematical area. Do not implement your own
optimization algorithms if you can help it!
» My advice: For unconstrained problems
» Batch is less hassle than online. But if you have big data, you

must use online. Batch is too slow
» (For neural networks, typically online methods are method of

choice.)
» If online, you use gradient descent. Forget about second order

stuff.
> If batch, use one of the fancy first-order methods
(quasi-Newton or conjugate gradients). DO NOT implement
either of these yourself!
» If you have a constrained problem
» Linear programs are easy. Use off the shelf tools.
» More than that: Try to convert into unconstrained problem.
» Convex problems: Global minimum. Non-convex: Local
optima.

31/32

What you should take away

» Complex mathematical area. Do not implement your own
optimization algorithms if you can help it!
» Stuff you should understand:

|

v vy VvYy

How and why we convert learning problems into optimization
problems

Modularity between modelling and optimization

Gradient descent

Why gradient descent can run into problems

Especially local minima

» Methods of choice: Fancy first-order methods (e.g.,
quasi-Newton, CG) for moderate amounts of data. Stochastic
gradient for large amounts of data.

