
Optimization
Machine Learning and Pattern Recognition

Chris Williams

School of Informatics, University of Edinburgh

October 2015

(These slides have been adapted from previous versions by Charles Sutton, Amos

Storkey, David Barber, and from Sam Roweis (1972-2010))

1 / 32

Outline

I Unconstrained Optimization Problems
I Gradient descent
I Second order methods

I Constrained Optimization Problems
I Linear programming
I Quadratic programming

I Non-convexity

I Reading: Murphy 8.3.2, 8.3.3, 8.5.2.3, 7.3.3.
Barber A.3, A.4, A.5 up to end A.5.1, A.5.7, 17.4.1 pp
379-381.

2 / 32

Why Numerical Optimization?

I Logistic regression and neural networks both result in
likelihoods that we cannot maximize in closed form.

I End result: an “error function” E(w) which we want to
minimize.

I Note argminf(x) = argmax− f(x)
I e.g., E(w) can be the negative of the log likelihood.

I Consider a fixed training set; think in weight (not input)
space. At each setting of the weights there is some error
(given the fixed training set): this defines an error surface in
weight space.

I Learning ≡ descending the error surface.

Bayesian Programme 4

• Ideally, we would be Bayesian, introduce a prior p(w), and use
Bayes rule to compute p(w|y1,x1, y2,x2, . . . , yn,xn).

• This is the posterior distribution of the parameters given the data.
A true Bayesian would integrate over it to make future predictions:

p(ynew|xnew, Y,X) =
∫

p(ynew|xnew,w)p(w|Y,X)dw

but often analytically intractable and computationally very difficult

• We can settle for maximizing and using the argmax w∗ to make
future predictions: this is called maximum a-posteriori, or MAP.

• Many of the penalized maximum likelihood techniques we used for
regularization are equivalent to MAP with certain parameter priors:

– quadratic weight decay (shrinkage) ⇔ Gaussian prior (var=1/2Λ)

– absolute weight decay (lasso) ⇔ Laplace prior (decay = 1/Λ)

– smoothing on multinomial parameters ⇔ Dirichlet prior

– smoothing on covariance matrices ⇔ Wishart prior

Error Surfaces and Weight Space 5

• End result: an “error function” E(w) which we want to minimize.

• E(w) can be the negative of the log likelihood or log posterior.

• Consider a fixed training set; think in weight (not input) space.
At each setting of the weights there is some error (given the fixed
training set): this defines an error surface in weight space.

• Learning == descending the error surface.

• Notice: If the data are IID, the error function E is a sum of error
functions En, one per data point.

E(w)

E

w

wj

wi

E(w)

Quadratic Error Surfaces and IID data 6

• A very common form for the cost (error) function is the quadratic:

E(w) = w#Aw + 2w#b + c

• This comes up as the log probability when using Gaussians, since if
the noise model is Gaussian, each of the En is an upside-down
parabola (called a “quadratic bowl” in higher dimensions).

• Fact: sum of parabolas (quadratics) is another parabola (quadratic)

• So the overall error surface is just a quadratic bowl.

• Fact: it is easy to find the minimum of a quadratic bowl:

E(w) = a + bw + cw2 ⇒ w∗ = −b/2c

E(w) = a + b#w + w#Cw ⇒ w∗ = −1

2
C−1b

• Convince yourself that for linear regression with Gaussian noise:

C = XX# and b = −2Xy#

Partial Derivatives of Error 7

• Question: if we wiggle wk and keep everything else the same, does
the error get better or worse?

• Luckily, calculus has an answer to exactly this question: ∂E
∂wk

.

• Plan: use a differentiable cost function E and compute partial
derivatives of each parameter with respect to this error: ∂E

∂wk

• Use the chain rule to compute the derivatives.

• The vector of partial derivatives is called the gradient of the error.
It points in the direction of steepest error descent in weight space.

• Three crucial questions:

– How do we compute the gradient ∇E efficiently?

– Once we have the gradient, how do we minimize the error?

– Where will we end up in weight space?

3 / 32

Role of Smoothness
If E completely unconstrained, minimization is impossible.

w

E(w)

All we could do is search through all possible values w.

Key idea: If E is continuous, then measuring E(w) gives
information about E at many nearby values.

4 / 32

Role of Derivatives

I Another powerful tool that we have is the gradient

∇E = (
∂E

∂w1
,
∂E

∂w2
, . . . ,

∂E

∂wD
)T .

I Two ways to think of this:
I Each ∂E

∂wk
says: If we wiggle wk and keep everything else the

same, does the error get better or worse?
I The function

f(w) = E(w0) + (w −w0)>∇E|w0

is a linear function of w that approximates E well in a
neighbourhood around w0. (Taylor’s theorem)

I Gradient points in the direction of steepest error ascent in
weight space.

5 / 32

Numerical Optimization Algorithms

I Numerical optimization algorithms try to solve the general
problem

min
w

E(w)

I Different types of optimization algorithms expect different
inputs

I Zero-th order: Requires only a procedure that computes E(w).
These are basically search algorithms.

I First order: Also requires the gradient ∇E
I Second order: Also requires the Hessian matrix ∇∇E
I High order: Uses higher order derivatives. Rarely useful.
I Constrained optimization: Only a subset of w values are legal.

I Today we’ll discuss first order, second order, and constrained
optimization

6 / 32

Optimization Algorithm Cartoon

I Basically, numerical optimization algorithms are iterative.
They generate a sequence of points

w0,w1,w2, . . .

E(w0), E(w1), E(w2), . . .
∇E(w0),∇E(w1),∇E(w2), . . .

I Basic optimization algorithm is

initialize w
while E(w) is unacceptably high

calculate g = ∇E
Compute direction d from w, E(w), g

(can use previous gradients as well...)
w← w − η d

end while
return w

7 / 32

Gradient Descent

I Locally the direction of steepest descent is the gradient.

I Simple gradient descent algorithm:

initialize w
while E(w) is unacceptably high

calculate g← ∂E
∂w

w← w − η g
end while
return w

I η is known as the step size (sometimes called learning rate)
I We must choose η > 0.
I η too small → too slow
I η too large → instability

8 / 32

Effect of Step Size

Goal: Minimize
E(w) = w2

Effect of Step Size

Goal: Minimize
E(w) = w2

−3 −2 −1 0 1 2 3

0

2

4

6

8

w

E(
w
)

I Take ⌘ = 0.1. Works well.

w0 = 1.0
w1 = w0 � 0.1 · 2w0 = 0.8
w2 = w1 � 0.1 · 2w1 = 0.64
w3 = w2 � 0.1 · 2w2 = 0.512
· · ·

w25 = 0.0047

11 / 24

I Take η = 0.1. Works well.

w0 = 1.0
w1 = w0 − 0.1 · 2w0 = 0.8
w2 = w1 − 0.1 · 2w1 = 0.64
w3 = w2 − 0.1 · 2w2 = 0.512
· · ·
w25 = 0.0047

9 / 32

Effect of Step Size

Goal: Minimize
E(w) = w2

Effect of Step Size

Goal: Minimize
E(w) = w2

−3 −2 −1 0 1 2 3

0

2

4

6

8

w

E(
w
)

I Take ⌘ = 0.1. Works well.

w0 = 1.0
w1 = w0 � 0.1 · 2w0 = 0.8
w2 = w1 � 0.1 · 2w1 = 0.64
w3 = w2 � 0.1 · 2w2 = 0.512
· · ·

w25 = 0.0047

11 / 24

I Take η = 1.1. Not so good. If you
step too far, you can leap over the
region that contains the minimum

w0 = 1.0
w1 = w0 − 1.1 · 2w0 = −1.2
w2 = w1 − 1.1 · 2w1 = 1.44
w3 = w2 − 1.1 · 2w2 = −1.72
· · ·
w25 = 79.50

I Finally, take η = 0.000001. What
happens here?

10 / 32

Batch vs online
I So far all the objective functions we have seen look like:

E(w;D) =
n∑
n=1

En(w; yn,xn).

D = {(x1, y1), (x2, y2), . . . (xn, yn)} is the training set.
I Each term sum depends on only one training instance
I The gradient in this case is always

∂E

∂w
=

N∑
n=1

∂En

∂w

I The algorithm on slide 8 scans all the training instances
before changing the parameters.

I Seems dumb if we have millions of training instances. Surely
we can get a gradient that is “good enough” from fewer
instances, e.g., a couple thousand? Or maybe even from just
one?

11 / 32

Batch vs online

I Batch learning: use all patterns in training set, and update
weights after calculating

∂E

∂w
=

N∑
n=1

∂En

∂w

I On-line learning: adapt weights after each pattern
presentation, using ∂En

∂w

I Batch more powerful optimization methods

I Batch easier to analyze

I On-line more feasible for huge or continually growing datasets

I On-line may have ability to jump over local optima

12 / 32

Algorithms for Batch Gradient Descent

I Here is batch gradient descent.

initialize w
while E(w) is unacceptably high

calculate g←∑N
n=1

∂En

∂w
w← w − η g

end while
return w

I This is just the algorithm we have seen before. We have just
“substituted in” the fact that E =

∑N
n=1E

n.

13 / 32

Algorithms for Online Gradient Descent

I Here is (a particular type of) online gradient descent algorithm

initialize w
while E(w) is unacceptably high

Pick j as uniform random integer in 1 . . . N
calculate g← ∂Ej

∂w
w← w − η g

end while
return w

I This version is also called “stochastic gradient ascent”
because we have picked the training instance randomly.

I There are other variants of online gradient descent.

14 / 32

Problems With Gradient Descent

I Setting the step size η

I Shallow valleys

I Highly curved error surfaces

I Local minima

15 / 32

Shallow Valleys

I Typical gradient descent can be fooled in several ways, which
is why more sophisticated methods are used when possible.
One problem:

“Bold Driver” Gradient Descent 8

•Once we have the gradient of our error function, how do we
minimize the weights? Follow it! But not too fast...

•Algorithm Gradient Descent
w ← GradientDescent(w0,x-train,y-train) {
step=median(abs(w0(:)))/100; errold=Inf; grad=0;

while(step>0)

w = w0 - step*grad;

(err,grad) ← errorGradient(w,x-train,y-train)

if(err>=errold)

step=step/2; grad=gradold;

else

step=step*1.01; errold=err; w0=w; gradold=grad;

end

end

}
• This algorithm only finds a local minimum of the cost.

• This is batch grad. descent, but mini-batch or online may be better.

Curved Error Surfaces 9

• Notice: the error surface may be curved differently in different
directions. This means that the gradient does not necessarily point
directly at the nearest local minimum.

dE
dW

• The local geometry of curvature is measured by the Hessian matrix
of second derivatives: Hij = ∂2E/∂wiwj.

• Eigenvectors/values of the Hessian describe the directions of
principal curvature and the amount of curvature in each direction.
Near a local minimum, the Hessian is positive definite.

•Maximum sensible stepsize is 2
λmax

Rate of convergence depends on (1− 2λmin
λmax

).

Momentum 10

• If the error surface is a long and narrow valley, grad. descent goes
quickly down the valley walls but very slowly along the valley bottom.

dE
dw

•We can alleviate this by updating our parameters using a
combination of the previous update and the gradient update:

∆wt
j = β∆wt−1

j + (1− β) ε ∂E/∂wj(w
t)

• Usually, β is quite high, about 0.95.

•When we have to retract a step, we set ∆wj to zero.

• Physically, this is like giving momentum to our weights.

Mini-Batch and Online Optimization 11

•When our data is big, computing the exact gradient is expensive.

• This seems wasteful, since the only thing we are going to use the
gradient for is to make a small change to the weights and then
throw it away and measure it again at the new weights.

• An approximate gradient is just as useful as long as it is somewhat
in line with the true gradient.

•One very easy way to do this is to use only a small batch of
examples (not the whole data set), compute the gradient and make
an update, then move to the next batch of examples. This is
mini-batch optimization.

• In the limit, we can use only one example per batch, this is called
online gradient descent, or stochastic gradient descent.

• These methods are often much faster than exact gradient descent,
and are very effective when combined with momentum.

I Gradient descent goes very slowly once it hits the shallow
valley.

I One hack to deal with this is momentum

dt = βdt−1 + (1− β)η∇E(wt)

I Now you have to set both η and β. Can be difficult and
irritating.

16 / 32

Curved Error Surfaces

I A second problem with gradient descent is that the gradient
might not point towards the optimum. This is because of
curvature

“Bold Driver” Gradient Descent 8

•Once we have the gradient of our error function, how do we
minimize the weights? Follow it! But not too fast...

•Algorithm Gradient Descent
w ← GradientDescent(w0,x-train,y-train) {
step=median(abs(w0(:)))/100; errold=Inf; grad=0;

while(step>0)

w = w0 - step*grad;

(err,grad) ← errorGradient(w,x-train,y-train)

if(err>=errold)

step=step/2; grad=gradold;

else

step=step*1.01; errold=err; w0=w; gradold=grad;

end

end

}
• This algorithm only finds a local minimum of the cost.

• This is batch grad. descent, but mini-batch or online may be better.

Curved Error Surfaces 9

• Notice: the error surface may be curved differently in different
directions. This means that the gradient does not necessarily point
directly at the nearest local minimum.

dE
dW

• The local geometry of curvature is measured by the Hessian matrix
of second derivatives: Hij = ∂2E/∂wiwj.

• Eigenvectors/values of the Hessian describe the directions of
principal curvature and the amount of curvature in each direction.
Near a local minimum, the Hessian is positive definite.

•Maximum sensible stepsize is 2
λmax

Rate of convergence depends on (1− 2λmin
λmax

).

Momentum 10

• If the error surface is a long and narrow valley, grad. descent goes
quickly down the valley walls but very slowly along the valley bottom.

dE
dw

•We can alleviate this by updating our parameters using a
combination of the previous update and the gradient update:

∆wt
j = β∆wt−1

j + (1− β) ε ∂E/∂wj(w
t)

• Usually, β is quite high, about 0.95.

•When we have to retract a step, we set ∆wj to zero.

• Physically, this is like giving momentum to our weights.

Mini-Batch and Online Optimization 11

•When our data is big, computing the exact gradient is expensive.

• This seems wasteful, since the only thing we are going to use the
gradient for is to make a small change to the weights and then
throw it away and measure it again at the new weights.

• An approximate gradient is just as useful as long as it is somewhat
in line with the true gradient.

•One very easy way to do this is to use only a small batch of
examples (not the whole data set), compute the gradient and make
an update, then move to the next batch of examples. This is
mini-batch optimization.

• In the limit, we can use only one example per batch, this is called
online gradient descent, or stochastic gradient descent.

• These methods are often much faster than exact gradient descent,
and are very effective when combined with momentum.

I Note: gradient is the locally steepest direction. Need not
directly point toward local optimum.

I Local curvature is measured by the Hessian matrix:
Hij = ∂2E/∂wiwj .

I By the way, do these ellipses remind you of anything?

17 / 32

Second Order Information

I Taylor expansion

E(w + δ) ' E(w) + δT∇wE +
1
2
δTHδ

where

Hij =
∂2E

∂wi∂wj

I H is called the Hessian.

I If H is positive definite, this models the error surface as a
quadratic bowl.

18 / 32

Quadratic Bowl

−1
0

1

−1

0

1
0

1

2

3

19 / 32

Direct Optimization

I A quadratic function

E(w) =
1
2
wTHw + bTw

can be minimised directly using

w = −H−1b

but this requires
I Knowing/computing H, which has size O(D2) for a
D-dimensional parameter space

I Inverting H, O(D3)

20 / 32

Newton’s Method

I Use the second order Taylor expansion

E(w + δ) ' E(w) + δT∇wE +
1
2
δTHδ

I From the last slide, the minimum of the approximation is
δ∗ = −H−1∇wE

I Use that as the direction in steepest descent

I This is called Newton’s method.

I You may have heard of Newton’s method for finding a root,
i.e., a point x such that f(x) = 0. Similar thing, we are
finding zeros of ∇f .

I Compare Newton step to gradient descent δ = −η∇wE

21 / 32

Advanced First Order Methods
I Newton’s method is fast in that once you are close enough to

a minimum.
I What we mean by this is that it needs very few iterations to

get close to the optimum (You can actually prove this if you
take an optimization course)

I If you have a not-too-large number of parameters and
instances, this is probably method of choice.

I But for most ML problems, it is slow. Why? How many
second derivatives are there?

I Instead we use “fancy” first-order methods that try to
approximate second order information using only gradients.

I These are the state of the art for batch methods
I One type: Quasi-Newton methods (I like one called limited

memory BFGS).
I Conjugate gradient
I We won’t discuss how these work, but you should know that

they exist so that you can use them.

22 / 32

Constrained problems

I Constraints: e.g. f(w) < 0.

I Example: Observe the points {0.5, 1.0} from a Gaussian with
known mean µ = 0.8 and unknown standard deviation σ.
Want to estimate σ by maximum likelihood.

I Constraint: σ must be positive.

I In this case to find the maximum likelihood solution, the
optimization problem is

max
σ

2∑
i=1

[− 1
2σ2

(xi − µ)2 − 1
2

log(2πσ2)]

subject to σ > 0

I In this case: solution can be done analytically. More complex
cases require a numerical method for constrained optimization.

23 / 32

Constrained problems

Either remove constraints by re-parameterization. E.g. w > 0. Set
φ = log(w). Now φ unconstrained.

Or use a constrained optimization method, e.g. for linear
programming, quadratic programming.

24 / 32

Linear Programming

I Find optimum, within a (potentially unbounded) polytope, of
a linear function

I Polytope = polygon or higher dimensional generalization
thereof.

I Easy: maximum (if it exists) must be at vertex of polytope (or
on a convex set containing such a vertex). Hill climb on
vertices using an adjacency walk (Simplex algorithm)

25 / 32

Quadratic Programming

I Find optimum, within a (potentially unbounded) polytope, of
a quadratic form

I Interior point methods, Active set methods.

I Second order methods for convex quadratic functions
Newton-Raphson, Conjugate Gradient variants.

I A number of machine learning methods are cast as quadratic
programming problems (e.g. Support Vector Machines).

26 / 32

Non-convexity and local minima

I If you follow the gradient, where will you end up? Once you
hit a local minimum, gradient is 0, so you stop.

Conjugate Gradients 16

•Observation: at the end of a line search, the new gradient is
(almost) orthogonal to the direction we just searched in.

• So if we choose the next search direction to be the new gradient,
we will always be searching successively orthogonal directions and
things will be very slow.

• Instead, select a new direction so that, to first order, as we move in
the new direction the gradient parallel to the old direction stays
zero. This involves blending the current gradient with the previous
search direction: d(t + 1) = −g(t + 1) + β(t)d(t).

d(t!1)

d(t)

d(t+1)

E
g d(t)=0T

d(t)

d(t+1)

w(t)

w(t+1)

Conjugate Gradients 17

• To first order, all three expressions below satisfy our constraint that
along the new search direction g"d(t) = 0:

d(t + 1) = −g(t + 1) + β(t)d(t)

β(t) =
g"(t + 1)(g(t + 1)− g(t))

d"(t)(g(t + 1)− g(t)
Hestenes-Stiefel

β(t) =
g"(t + 1)(g(t + 1)− g(t))

g"(t)g(t)
Polak-Ribiere

β(t) =
g"(t + 1)g(t + 1)

g"(t)g(t)
Fletcher-Reeves

Convexity, Local Optima 18

• Unfortunately, many error functions while differentiable are not
unimodal. When using gradient descent we can get stuck in local
minima. Where we end up depends on where we start.

er
ro

r

parameter space

• Some very nice error functions (e.g. linear least squares, logistic
regression, lasso) are convex, and thus have a unique (global)
minimum. Convexity means that the second derivative is always
positive. No linear combination of weights can have greater error
than the linear combination of the original errors.

• But most settings do not lead to convex optimization problems.

Constrained Optimization 19

• Sometimes we want to optimize with some constraints on the
parameters.
e.g. variances are always positive
e.g. priors are non-negative and sum to unity (live on the simplex)

• There are two ways to get around this.
First, we can reparametrize so that the new parameters are
unconstrained.
e.g. use log(variances) or use softmax inputs for priors.

• The other way is to explicitly incorporate the constraints into our
cost function.

I Certain nice functions, such as the likelihood for linear and
logistic regression are convex, meaning that the second
derivative is always positive. This implies that any local
minimum is global.

27 / 32

I Dealing with local minima: Train multiple models from
different starting places, and then choose best (or combine in
some way).

I No guarantees. Unrealistic to believe this will find global
mimimum.

I Local minima occur, e.g. for neural networks

I Bayesian interpretation, where E(w) = − log p(w|D)
I Finding local minima of E(w) as a way of approximating

integration over the posterior by finding local maxima of
p(w|D)

28 / 32

Convex Functions

I A function f : Rd → R is convex if for α ∈ [0, 1]

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y)

Essentially “bowl shaped”

I Examples:

f(x) = x2 f(x) = − log x f(x) = log

(∑
d

exp{xd}
)

I If f differentiable, this implies

f(x0) + (x− x0)>∇f |x0 ≤ f(x)

for all x and x0. (To see this: take limit of above as x→ y.)

I This implies that any local minimum is a global one!

29 / 32

Convex Optimization Problems

I A convex optimization problem is one that can be written as

min f0(x)
subject to fi(x) ≤ 0 i ∈ {1 . . . N}

for some choice of functions f0 . . . fN where each fi is convex

I Optimise convex function over a convex set...

I Unconstrained problems: Use methods from before. You’ll
find a global optimum!

I Convexity means any local optimum is also global optimum.

I Constrained convex problems: Interior point methods, Active
set methods.

I Most convex optimization problems can be solved efficiently in
practice.

I (How high a scale you can reach depends on the type of
problem you have)

30 / 32

Optimization: Summary

I Complex mathematical area. Do not implement your own
optimization algorithms if you can help it!

I My advice: For unconstrained problems
I Batch is less hassle than online. But if you have big data, you

must use online. Batch is too slow
I (For neural networks, typically online methods are method of

choice.)
I If online, you use gradient descent. Forget about second order

stuff.
I If batch, use one of the fancy first-order methods

(quasi-Newton or conjugate gradients). DO NOT implement
either of these yourself!

I If you have a constrained problem
I Linear programs are easy. Use off the shelf tools.
I More than that: Try to convert into unconstrained problem.

I Convex problems: Global minimum. Non-convex: Local
optima.

31 / 32

What you should take away

I Complex mathematical area. Do not implement your own
optimization algorithms if you can help it!

I Stuff you should understand:
I How and why we convert learning problems into optimization

problems
I Modularity between modelling and optimization
I Gradient descent
I Why gradient descent can run into problems
I Especially local minima

I Methods of choice: Fancy first-order methods (e.g.,
quasi-Newton, CG) for moderate amounts of data. Stochastic
gradient for large amounts of data.

32 / 32

