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Outline

I Data

I Probabilistic Models of Data

I The Inverse Problem

I Simple example: learning about a Bernoulli variable

I Real example: Naive Bayes classifier

Readings: Murphy 3.3 up to and including 3.3.1, 3.5 up to and
including 3.5.1.1 Barber 9.1.1, 9.1.3, 10.1-10.2
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Data? All shapes and sizes.

I Data types:
I Real valued, positive, vector (geometric), bounded, thresholded
I Categorical data, hierarchical classes, multiple membership, etc
I Ordinal data, binary data, partially ordered sets
I Missing, with known error, with error bars (known

measurement error)
I Internal dependencies, conditional categories
I Raw, preprocessed, normalised, transformed etc
I Biased, corrupted, just plain wrong, in unusable formats
I Possessed, promised, planned, non-existent
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Attributes and Values

I Simple datasets can be thought of as attribute value pairs

I For example “state of weather” is an attribute and “raining”
is a value

I “Height” is an attribute, and “4ft 6in” is a value

I In this course we will assume that the data have been
transformed into a vector x ∈ RD

I This transformation can be the most important part of a
learning algorithm! Here’s an example...
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Categorical Data

I Each observation belongs to one of a number of categories.
Orderless. E.g. type of fruit.

I 1-of-M encoding. Represent each category by a particular
component of an attribute vector.

0 1 0 0
1 0 0 0
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

I Only one component can be ‘on’ at any one time. Attributes
are not (cannot be) independent.
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Practical Hint

Get to know your data!

Test your high level assumptions before you use them to build
models...
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Probabilistic Models of Data

Supervised Learning

p(x, y, θ|M), where θ denotes the parameters of the model.
D = ((x1, y1), . . . , (xN , yN ))

Unsupervised Learning

p(x, θ|M), and data D = (x1, , . . . ,xN )

Tasks
I Prediction: p(y∗|x∗, θ,M), or p(y∗|x∗,D,M)

unsupervised: p(x∗|D,M)
I Learning: p(θ|D,M)
I Model Selection: p(D|M)

In the next two weeks, we’ll see examples of using probabilistic
models to do all of these things
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Generative and Discriminative Models

I Supervised setting

I Discriminative model: p(y|x,D)
I Generative model:

p(y|x,D) ∝ p(x|y,D)p(y|D)

I With a generative model we can sample x’s from the model
to get artificial data

I Which approach is better?
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The Inverse Problem

I We built a generative model, or a set of generative models on
the basis of what we know (prior)

I Can generate artificial data

I BUT what if we want to learn a good distribution for data
that we actually see? How is goodness measured?

Explaining Data

A particular distribution explains the data better if the data is
more probable under that distribution: the maximum likelihood
method
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Likelihood

I p(D|M). The probability of the data D given a distribution
(or model) M. This is called the likelihood

I This is

L(M) = p(D|M) =
N∏
n=1

p(xn|M)

i.e. the product of the probabilities of generating each data
point individually

I This is a result of the independence assumption (indep →
product of probabilities by definition)

I Key point: We consider this as a function of the model; the
data is fixed

I Try different M (different distributions). Pick the M with
the highest likelihood → Maximum Likelihood Method
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Bernoulli Model

Example

Data: 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1.

I Three hypotheses:
I M = 1 - From a fair coin. 1=H, 0=T
I M = 2 - From a die throw 1=1, 0 = 2,3,4,5,6
I M = 3 - From a double headed coin 1=H, 0=T
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Bernoulli Model

Example

Data: 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1.

I Three hypotheses:
I M = 1 - From a fair coin. 1=H, 0=T
I M = 2 - From a die throw 1=1, 0 = 2,3,4,5,6
I M = 3 - From a double headed coin 1=H, 0=T

I Likelihood of data. Let N1=number of ones, N0=number of
zeros, with N = N0 +N1:

N∏
n=1

p(xn|M) = p(1|M)N1p(0|M)N0

I M = 1: Likelihood is 0.520 = 9.5× 10−7

I M = 2: Likelihood is (1/6)9 (5/6)11 = 1.3× 10−8

I M = 3: Likelihood is 19 011 = 0
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Bernoulli model 2

Example

Data: 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1.

I Continuous range of hypotheses: M = π - Generated from a
Bernoulli distribution with parameter p(x = 1|π) = π.

I Likelihood:
N∏
n=1

p(xn|π) = πN1(1− π)N0

I Maximum likelihood hypothesis? Differentiate w.r.t. π to find
maximum

I In fact usually easier to differentiate log p(D|M): log is
monotonic. So argmax log f(x) = argmax f(x).
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Bernoulli model 2

Example

Data: 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1.

I Log likelihood:

L(π) = log
N∏
n=1

p(xn|π) = N1 log π +N0 log(1− π)

I Set d/dπL(π) = N1/π −N0/(1− π) to zero to find
maximum.

I So N1(1− π)−N0π = 0. This gives π̂ = N1/N . Maximum
likelihood result is unsurprising

I Warning: do we always believe all possible values of π are
equally likely?
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On the board

It’s useful to plot this.

L(π) = log
N∏
n=1

p(xn|π) = N1 log π +N0 log(1− π)
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Maximum Likelihood in General

I Model M, data D and parameters θ

I Maximum likelihood estimator (MLE) obtained by

θ̂ = argmaxθL(θ;M,D)

I MLE has several attractive statistical properties
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Naive Bayes

Now let’s look at a probabilistic generative model in a supervised
setting

I Typical example: “Naive-Bayes Spam Filter” for classifying
documents as spam (unwanted) or ham (wanted)

I (Not really a Bayesian method, in some sense—where that sense is

the one we’ll talk about next time).

I Basic (naive) assumption: conditional independence.

I Given the class (eg “Spam”, “Not Spam”), whether one data
item appears is independent of whether another appears.

I Invariably wrong! But useful anyway.
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Conditional Independence, Parameters

I x1, x2, . . . , xD are said to be conditionally independent given
y iff

p(x|y = c,θ) =
D∏
d=1

p(xd|y = c, θdc)

for x = (x1, x2, . . . , xD)T .

I p(y = c) = πc
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Naive Bayes

I The equation on the previous slide is in fact one part of the
Naive Bayes Model. Extending for all the data
{(xn, yn)|n = 1, 2, . . . , N} we have:

p(D|θ,π) =
∏
n

p(xn|yn,θ)p(yn|π) =
∏
n

p(yn|π)
D∏
d=1

p(xnd |yn,θd)

for xn = (xn1 , . . . , x
n
D)T .

I xn is our attribute vector for data point n, and yn the
corresponding class label.

I We want to learn π and θ from the data.

I We then want to find the best choice of y∗ corresponding to a
new datum x∗ (inference).
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Maximum Likelihood for Naive Bayes

I Simplest model: xd is binary (presence or absence of word), y
is binary (spam or ham).

I Already done this: p(xd|y) and p(y) are both Bernoulli
variables - see earlier. Just need to count to get maximum
likelihood solution.

I π̂Spam is (number of Spam documents)/(total number of
documents)

I θ̂d,Spam is (number of spam documents that feature d turns
up in)/(number of spam documents)
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Spam

Sources: http://en.wikipedia.org/wiki/Spam (Monty Python),

http://commons.wikimedia.org/wiki/File:Spam 2.jpg
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Whole Model

I We have built a class conditional model using the conditional
probability of seeing each feature, given the document class
(e.g. Spam/not Spam).

I Probability of Spam containing each feature. Probability of
not Spam containing each feature. Estimated using maximum
likelihood.

I Prior probability of Spam. Estimated using maximum
likelihood.

I New document. Check the presence/absence of each feature.
Build x∗

I Calculate the Spam probability given the vector of word
occurrence.

I How?
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Inference in Naive Bayes

Use Bayes Theorem

p(Spam|x∗,θ,π) =
πSpam

∏
d p(x

∗
d|Spam)

p(x∗|θ,π)

where

p(x∗|θ,π) = πHam
∏
d

p(x∗d|Ham) + πSpam
∏
d

p(x∗d|Spam)

by normalisation
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Summary

I Given the data, and a model (a set of hypotheses - either
discrete or continuous) we can find a maximum likelihood
model/parameters for the data.

I Naive Bayes: Conditional independence

I Bag of words.

I Learning Parameters.

I Bayes Rule

I Next lecture: Bayesian methods.
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