
Lecture 18, Friday w9, 2015-11-20

This lecture finished talking about Gaussian processes. And had a quick look
at Principal Components Analysis (PCA).

Gaussian processes

I did some review, including looking at the squared exponential kernel that are
in the last lecture’s notes, but that I’d only shown you very quickly.

We can learn the parameters of a kernel such as ℓ and σ2
f (and perhaps the

weights in a combination of kernels), and the observation noise level σ2
n, from

the data. The likelihood is simply the Gaussian probability of the observed
outputs given all these (hyper-)parameters. It’s common to find maximum
likelihood fits, or we could be fully Bayesian (using approximate methods such
as MCMC) to integrate over the possible hyper-parameters.

It’s often said that we can fit hyper-parameters without overfitting because there
aren’t many of them. However, for small datasets we’ve seen that different
hyperparameters can give different and reasonable explanations of the data.
So we might want to consider multiple settings of the hyperparameters. As a
practical warning, letting the noise level σ2

n go close to zero can easily lead to
overfitting. If you do fit the parameters, I recommend some regularization of at
least the noise parameter.

Gaussian processes are computationally expensive for large datasets. Just com-
puting and storing the kernel can be a burden, O(n2). Then factorizing the
kernel to solve linear systems and compute determinants costs O(n3). There
are fast methods that work in special circumstances. But for some regression
problems the most competitive approximate Gaussian process method is to sim-
ply throw away some of the data(!).

Final remark: Although Gaussian processes are flexible models, as with all ma-
chine learning methods, it’s still a good idea to consider standard pre-processing.
For example, try taking the logs of positive inputs and positive outputs. (Non-
examinable: a better transformation might be learned from the data; perhaps
even using Gaussian processes!)

Principal Components Analysis (PCA)

In this lecture I only showed the first 8 slides of the PCA slide set.

Principal Components Analysis reduces the dimensionality of an N × D data
matrix, by multiplying by a D × K matrix V .

The columns of V are the K orthonormal eigenvectors of the covariance matrix
associated with the largest K eigenvalues. If X is zero-mean, V contains the

1



eigenvectors of X⊤X. See the slides for example code.
An intuition is that many datasets don’t fill their native D-dimensional space.
There are many strong constraints between the variables. For example, the
location of a point on a mesh representing a human body is strongly constrained
by the surrounding mesh-points. PCA describes the principal ways in which
variables can jointly change when moving away from the mean object.
PCA is widely used, across many different types of data. It can give a quick
first visualization of a dataset. Or reduce the number of dimensions of a data
matrix if overfitting or the computational cost of fitting is a concern.
Given an N × D matrix, we can run PCA to visualize the N rows. Or we can
transpose the matrix and instead visualize the D columns. Example: given
a matrix relating students and courses, we might be interested in visualizing
either the students or the courses or both.

Test your understanding

Here are questions about the lengthscale parameter(s) ℓd in the squared expo-
nential kernel. The answers aren’t explicitly in the slides, you’ll have to think
about what the prior model says, and so what will be imposed on the posterior.

• If a GP uses a kernel with a lengthscale that is too short, what will happen
and why? You don’t need to do maths: sketch what draws from the prior
would be like, and use your intuition to see what posterior samples would
look like given a few datapoints.

• What will happen as the lengthscale ℓ is driven to infinity?

• If a kernel has a different lengthscale ℓd for each feature-vector dimension,
what happens if we drive one of these lengthscales to infinity?

Further reading

Optional further reading on PCA: Murphy 12.2.1 p387–389, and 12.2.3 pp392–
395.

Bonus notes

Non-examinable!
The truncated SVD view of PCA shows how to simultaneously reduce the di-
mensionality of the rows and columns of a matrix.
Singular Value Decomposition (SVD) is a standard technique, available in most
linear algebra packages. It factors a N × D matrix into a product of three

2



matrices, U of size N × K, S a diagonal K × K matrix, and V ⊤ of size K × D.
The V matrix is the same as before, its columns (or the rows of V ⊤ contain
eigenvectors of X⊤X. The columns of U contain eigenvectors of XX⊤. The
rows of U give a K-dimensional embedding of the rows of X. The columns of
V ⊤ (or the rows of V ) give a K-dimensional embedding of the columns of X.

A truncated SVD is known to be the best low-rank approximation of a matrix (as
measured by square error). PCA is the linear dimensionality reduction method
that minimizes the least squares error in the distortion if we project back to the
original space: X ≈ XV V ⊤.

In the past I’ve been asked: if X is a square symmetrical matrix, doesn’t the
SVD of X give me the eigenvectors of X? Yes it does. That’s potentially
confusing because above I said that it gives the eigenvectors of XX⊤ and X⊤X.
For a square symmetrical matrix, the SVD therefore gives the eigenvectors of X2.
These are in fact the same as the eigenvectors of X, so there’s no contradiction.

X2 is the square function applied to the matrix X. A way to apply a function to
a covariance matrix is to decompose the matrix using the full SVD: X = USV ⊤,
apply the function to the diagonal elements of S (in this case square the values),
and then put the matrix back together again. The eigenvectors don’t change!
It may interest you to know that other functions are applied to matrices in
this way. For example the matrix exponential of a covariance matrix (expm in
Matlab), equal to X + 1

2 X2 + 1
3! X

3 + 1
4! X

4..., can be computed by taking the
SVD, exponentiating the singular values, and putting the matrix back together
again. For a general square matrix, a function is applied to eigenvalues in an
eigendecomposition X = UΛU−1.

3


	Lecture 18, Friday w9, 2015-11-20
	Gaussian processes
	Principal Components Analysis (PCA)
	Test your understanding
	Further reading
	Bonus notes


