
Machine Learning and Pattern Recognition
Tutorial 5
Instructor: Iain Murray

Motivation for this tutorial: Some of the questions in this tutorial ask you to perform some
(short!) numerical experiments. Hopefully learning to do these things quickly will be a useful
skill. Putting standard error bars on experimental results is a minimal piece of statistical care
which might be useful in many of your projects.

1. Model comparison computation: It’s common to compute log-likelihoods and log-
marginal-likelihoods to avoid numerical underflow. (Quick example: notice that the
probability of 2000 coin tosses, 2−2000, underflows to zero in Matlab, or any package
using IEEE floating point.)

Assuming there are only two possible models, M1 and M2, we define:

a1 = log P(D |M1) + log P(M1)

a2 = log P(D |M2) + log P(M2).

These ‘activations’ are the log-posteriors of each model, up to a constant. Show that
we can get the posterior probability of model M1 neatly with the logistic function:

P(M1 |D) = σ(a1 − a2) =
1

1 + exp(−(a1 − a2))
.

Given K models, with ak = log[P(D |Mk) P(Mk)], show:

log P(Mk |D) = ak − log ∑
k

exp ak.

The log ∑ exp function occurs frequently in the maths for probabilistic models (not
just model comparison). Show that:

log ∑
k

exp ak = max
k

ak + log ∑
k

exp
(

ak −max
k′

ak′
)

.

Explain why the expression is often implemented this way. (Hint: consider what
happens when all the ak’s are less than −1000).

Answer:

Bayes’ rule: P(M1 |D) = ea1 /Z and P(M2 |D) = ea2 /Z, where Z = P(D).

Only two possible models⇒ P(M1 |D) + P(M2 |D) = 1, Z = ea1 + ea2 .

Substituting Z,

P(M1 |D) =
ea1

ea1 + ea2
=

1
1 + ea2−a1

= σ(a1 − a2).

With K models P(D) = ∑k P(D, Mk) = ∑k eak , so Bayes rule gives:

P(Mk |D) =
eak

∑k′ eak′
, (a ‘softmax’)

log P(Mk |D) = ak − log ∑
k′

eak′ .
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This expression involves eak ’s. If all the ak’s are very negative, we may take the log
of zero and obtain -Inf. In the alternative expression, some of the terms may still
underflow. However the largest term in the sum is now e0 = 1. Any terms that
underflow are less than realmin ≈ 2×10−308 and so would have no practical effect
when added on to a sum of value ≥ 1.

2. Simple Monte Carlo: Let x be distributed according to a distribution with mean µ
and variance σ2. To construct an example, sample a vector of a hundred samples from
Uniform[0,1], using rand in Octave or Matlab. Given access to only these samples, find
estimates (µ̂, σ̂2) of the mean and variance of x.

Show that the Monte Carlo estimate of the mean

E[x] ≈ 1
S

S

∑
s=1

x(s)

has variance σ2/S (in general, not just for a uniform).

It’s common to report an estimate of a mean using a ‘standard error’, the square root
of an estimate of this variance:

E[x] = µ̂± σ̂√
S

Write down your estimate of the mean in this form. Is your answer within two standard
errors of the true answer? It should fall in that range around 95% of the time. In a class
of 120, some of you will probably get a ‘wrong’ estimate! Try running your code again
and see if the true answer is usually within 1 or 2 standard errors.

Also report an estimate of E[x2] with a standard error.

Answer:

S = 100;
xx = rand(S, 1);
mu_est = mean(xx);
var_est = var(xx); % var(xx,1) if you want to normalize by N instead of N-1

The variance of independent variables adds, and each x(s) is identically distributed
with variance σ2. So the var[∑s x(s)] = Sσ2. Scaling a variable by a constant, scales the
variance by the constant squared, so var[(1/S)∑s x(s)] = (1/S2)(Sσ2) = σ2/S.

std_err = sqrt(var_est/S);
fprintf(’%1.3f +/- %1.3f\n’, mu_est, std_err);
0.529 +/- 0.028

The answer depends on random draws, so will be different each time. It’s arguable
whether to use one or two significant figures for the error bar, but don’t use more.

To find the estimate of any function of x, we just repeat the procedure with the function
evaluations in place of the original values:
mu_est = mean(xx.ˆ2);
var_est = var(xx.ˆ2);
std_err = sqrt(var_est/S);
fprintf(’%1.3f +/- %1.3f\n’, mu_est, std_err);
0.358 +/- 0.028
Compatible with the true answer of 1/3.

If one estimates sample means a lot, one wraps it into a standard routine:
http://homepages.inf.ed.ac.uk/imurray2/code/imurray-matlab/errorbar_str.m
errorbar_str(xx.ˆ2);
0.358 +/- 0.028
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3. Rejection sampling: use a simple Monte Carlo procedure to estimate the mean of the
truncated normal:

p(x) ∝

{
N(x; 0, 1) x > 1
0 otherwise

What would happen if you applied your procedure to a truncation at x > 6?

Answer:

The standard untruncated normal, scaled to the same height as the truncated normal,
is an upper bound on the truncated normal. Therefore we can sample from q(x) =
N(x; 0, 1), then reject samples whenever x ≤ 1.

In this case we can omit the step in the generic algorithm where we draw a random
height under the curve. When x ≤ 1 we would always draw a sample above the target
density curve. When x > 1, the curves touch and the point would always be below the
target density curve.

xx = randn(1e6,1); % draw lots of samples from q
xx = xx(xx>1); % thin, we now have (fewer!) samples from p
errorbar_str(xx); % routine to estimate mean and std err from q2
1.5259 +/- 0.0011

(Actual answer to 5sf, 1.5251).

The probability of getting x>6 is around 10−9 so it takes roughly a billion proposals
to get a single sample. The method would work eventually, if prepared to draw at least
several billion samples. (The accompanying q3a.m explores one possible fix.)

4. Importance sampling: How could we use importance sampling to estimate the mean
of a truncated distribution with x > 6?

Answer:

If we use importance sampling with the same q(x) = N(x; 0, 1) proposals as before,
we’ll have the same problem. Only about a billionth of samples will get non-zero
importance weight.

We could sample from a distribution that puts more weight on the tail area.

The question doesn’t actually ask us to code up an answer, but I’ll do it anyway. I
sampled points from a standard normal with mean 6, and reflected all the samples to
be greater than 6:

q(x) =

{
2N(x; 6, 1) x > 6
0 otherwise

Some thought will reveal better things to do. But I thought this might work.

tt = 6; S = 1e6;
xx = abs(randn(S, 1)) + tt;
q_x = 2*exp(-(xx-tt).ˆ2/2)/sqrt(2*pi);
pstar_x = exp(-xx.ˆ2/2)/sqrt(2*pi);
wstar = (pstar_x./q_x); % unnormalized weights. pstar_x *not* normalized!
ww = wstar/sum(wstar);
est = sum(ww.*xx)
6.158

I can’t add a standard error bar to the estimate in the same way as before, because
the normalization of the weights couples the terms in the sum. Non-examinable:
constructing an estimate of the variance is reviewed in section 3 of:
http://www.cs.toronto.edu/~radford/ais.abstract.html

3

http://www.cs.toronto.edu/~radford/ais.abstract.html


If I were responsible, I would examine the weights and check that I don’t need to make
q broader, or with heavier tails. Given the answer seems so close to 6, and q goes out a
lot further, I doubt there are problems.

5. Markov chain Monte Carlo: we could apply the Metropolis algorithm (using the code
from the slides and copied below, or otherwise) to estimate the mean of the truncated
normal with x > 6.

What would be the difficulty with reporting error bars on our estimate?

Answer:

We can’t compute a standard error simply from the samples as in question 2, because
the samples aren’t independent, so the variance of the estimator is not σ2/S.

That’s the answer to the question, but keen students will wonder what to do about it,
and may wish to see some code anyway. . .

The thing that requires least thought is probably to do K independent runs of the algo-
rithm, to get K independent estimators. Anything beyond that is non-examinable. Rad-
ford Neal’s review http://www.cs.toronto.edu/~radford/review.abstract.html
discussed some other options. Packages like R-CODA can do time-series analysis of
your samples to try to estimate how many “effective samples” there are.

xx = dumb_metropolis(6.5, @(x) (-0.5*x*x)+log(double(x>6)), 1e6, 1.0);
mean(xx)
ans =
6.1588
Without doing any careful analysis, we do get some confirmation that our previous
answer seems reasonable.

The acceptance rate of the chain was a little low, but not disastrously so:
mean(xx(2:end) =xx(1:end-1))
ans =
0.1236
I would consider reducing the step-size from 1.0 for another run. (A theoretically desir-
able acceptance rate is 0.234: http://projecteuclid.org/euclid.aoap/1034625254.)

q5.m, distributed with the answers, does multiple runs with a step-size of 0.5 to get an
answer with error-bars.

function samples = dumb_metropolis(init, log_ptilde, iters, sigma)

D = numel(init);
samples = zeros(D, iters);

state = init;
Lp_state = log_ptilde(state);
for ss = 1:iters

% Propose
prop = state + sigma*randn(size(state));
Lp_prop = log_ptilde(prop);
if log(rand) < (Lp_prop - Lp_state)

% Accept
state = prop;
Lp_state = Lp_prop;

end
samples(:, ss) = state(:);

end
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