
Machine Learning and Pattern Recognition
Tutorial 5
Instructor: Iain Murray

Motivation for this tutorial: Some of the questions in this tutorial ask you to perform some
(short!) numerical experiments. Hopefully learning to do these things quickly will be a useful
skill. Putting standard error bars on experimental results is a minimal piece of statistical care
which might be useful in many of your projects.

1. Model comparison computation: It’s common to compute log-likelihoods and log-
marginal-likelihoods to avoid numerical underflow. (Quick example: notice that the
probability of 2000 coin tosses, 2−2000, underflows to zero in Matlab, or any package
using IEEE floating point.)

Assuming there are only two possible models, M1 and M2, we define:

a1 = log P(D |M1) + log P(M1)

a2 = log P(D |M2) + log P(M2).

These ‘activations’ are the log-posteriors of each model, up to a constant. Show that
we can get the posterior probability of model M1 neatly with the logistic function:

P(M1 |D) = σ(a1 − a2) =
1

1 + exp(−(a1 − a2))
.

Given K models, with ak = log[P(D |Mk) P(Mk)], show:

log P(Mk |D) = ak − log ∑
k

exp ak.

The log ∑ exp function occurs frequently in the maths for probabilistic models (not
just model comparison). Show that:

log ∑
k

exp ak = max
k

ak + log ∑
k

exp
(

ak −max
k′

ak′
)

.

Explain why the expression is often implemented this way. (Hint: consider what
happens when all the ak’s are less than −1000).

2. Simple Monte Carlo: Let x be distributed according to a distribution with mean µ
and variance σ2. To construct an example, sample a vector of a hundred samples from
Uniform[0,1], using rand in Octave or Matlab. Given access to only these samples, find
estimates (µ̂, σ̂2) of the mean and variance of x.

Show that the Monte Carlo estimate of the mean

E[x] ≈ 1
S

S

∑
s=1

x(s)

has variance σ2/S (in general, not just for a uniform).

It’s common to report an estimate of a mean using a ‘standard error’, the square root
of an estimate of this variance:

E[x] = µ̂± σ̂√
S

Write down your estimate of the mean in this form. Is your answer within two standard
errors of the true answer? It should fall in that range around 95% of the time. In a class

1



of 120, some of you will probably get a ‘wrong’ estimate! Try running your code again
and see if the true answer is usually within 1 or 2 standard errors.

Also report an estimate of E[x2] with a standard error.

3. Rejection sampling: use a simple Monte Carlo procedure to estimate the mean of the
truncated normal:

p(x) ∝

{
N(x; 0, 1) x > 1
0 otherwise

What would happen if you applied your procedure to a truncation at x > 6?

4. Importance sampling: How could we use importance sampling to estimate the mean
of a truncated distribution with x > 6?

5. Metropolis sampling: we could apply the Metropolis algorithm (using the code from
the slides and copied below, or otherwise) to estimate the mean of the truncated
normal with x > 6.

What would be the difficulty with reporting error bars on our estimate?

function samples = dumb_metropolis(init, log_ptilde, iters, sigma)

D = numel(init);
samples = zeros(D, iters);

state = init;
Lp_state = log_ptilde(state);
for ss = 1:iters

% Propose
prop = state + sigma*randn(size(state));
Lp_prop = log_ptilde(prop);
if log(rand) < (Lp_prop - Lp_state)

% Accept
state = prop;
Lp_state = Lp_prop;

end
samples(:, ss) = state(:);

end

2


