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1. Let E(w) be a differentiable function. Consider the gradient descent procedure

wt+1 ← wt − η∇wE

Let’s say we initialize w0 = 0. True/false:

(a) Let w1 be the result of taking one gradient step. Then the error always improves, i.e., E(w1) ≤
E(w0).

(b) There exists some choice of the step size η such that E(w1) < E(w0).

Solution:

(a) False. If η is too large we may increase the value of E even though we are going in the negative
gradient direction.

(b) False. If were at a local optimum, then the gradient is zero and gradient descent will not change the
location. However, this is a bit of a trick question in that if ∇wE 6= 0, then the statement is indeed
true: If we take a small enough step, we’re guaranteed to decrease the function. Using a Taylor
expansion, we have that

E(wt + ∆w) = E(wt) + (∆w)T∇wE + . . . (1)

Setting ∆w = −η∇wE we have that

E(wt + ∆w) = E(wt)− η(∇wE)T∇wE +O(η2) (2)

so the change is negative for small enough η.

�

2. In the gradient descent procedure, a common programming mistake is to forget the minus sign, i.e.,
you unintentionally write a procedure that does

wt+1 ← wt + η∇wE

If you make this mistake, what happens?

Solution: The algorithm maximizes E rather than minimizing it. Ordinarily, if you really did mean to
minimize E, then it will have no maximum. E.g., in linear regression, it is possible to make the squared
error as large as you like by using a particularly poor set of weights. So typically you will see E(wt) go
to infinity as t→∞. �

3. Consider the following classification problem. There are two real-valued features x1, x2 ∈ R and a
binary class label. The class label is determined by

y =

{
1 if x2 ≥ |x1|
0 otherwise

(3)
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(a) Can this be perfectly represented by a feedforward neural network without a hidden layer? Why or
why not?

(b) Let’s consider a simpler problem for a moment. Consider the classification problem.

y =

{
1 if x2 ≥ x1

0 otherwise
(4)

Design a single neuron that solves this problem. Pick the weights by hand. For an activation function,
use the hard threshold function

h(a) =

{
1 if a ≥ 0
0 otherwise

(c) Now go back to the classification problem at the beginning of this question. Design a two layer
feedforward network (i.e., one hidden layer) that represents this function. Use the hard threshold
activation function as in the previous question. Hints: Use two units in the hidden layer. The unit
from the last question will be one of the units, and you will need to design one more. Your output
unit will essentially perform a binary AND operation on the hidden units.

Solution:

(a) No. A neural network without a hidden layer simply computes a linear function of the inputs. The
decision boundary required for this problem is not linear.

(b) Call the neuron z1, and compute its output by

z1 = h(v11x1 + v12x2 + v10)

Set
v11 = −1, v12 = 1, v10 = 0.

Now z1 > 0 ⇐⇒ x2 − x1 ≥ 0.

(c) Define another hidden unit z2 as

z2 = h(v21x1 + v22x2 + v20)

set
v11 = 1, v12 = 1, v10 = 0.

Now z2 > 0 ⇐⇒ x1 + x2 ≥ 0. So x2 ≥ −x1.

The intersection of the area for which z1 ≥ 0 and the area for which z2 ≥ 0 is the area where y = 1.
We can set up a logical AND with the following output unit:

f = h(w1z1 + w2z2 + w0),

where we choose
w1 = 1, w2 = 1, w0 = −1.1

You can show that now y = 1 ⇐⇒ x2 ≥ |x1|. Try this on a few example points to verify that it
works.

�

4. The following problem was introduced in the lectures. Work through the rest of the problem to obtain
the solution.

You are an auditor of a firm. You receive details about the sales that a particular salesman is making.
He attempts to make 4 sales a day to independent companies. You receive a list of the number of sales
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by this agent made on a number of days. Explain why you would expect the total number of sales to be
binomially distributed.

If the agent was making the sales numbers up as part of a fraud, you might expect the agent (as he
is a bit dim) to choose the number of sales at random from a uniform distribution. You are aware of
the fraud possibility, and you understand there is something like a 1/5 chance this salesman is involved.
Given daily sales counts of 1 2 2 4 1 4 3 2 4 1 3 3 2 4 3 3 2 3 3, do you think the salesman is lying?

From the lectures we had:

• M = 1 - From P1(x|p) a binomial distribution Binomial(4, p). Prior on p is uniform.

• M = 2 - From P2(x) a uniform distribution Uniform(0,. . . ,4).

• P (M = 1) = 0.8.

P (D|M = 1) =
∫
dp P1(D|p)P (p) , P (D|M = 2) = P2(D)

P (M|D) =
P (D|M)P (M)

P (D|M = 1)P (M = 1) + P (D|M = 2)P (M = 2)

To get the solution, you should look at the form of the density of a beta distribution and note that
it must integrate to 1. You also will need to be able to compute with Γ functions of big numbers. In
matlab it is worth doing the computations in log space, and using the gammaln function. Then you can
exponentiate it when you have done all the sums.

Solution: Look up the Binomial Distribution. For a single observation of a count X = r under a
Binomial distribution with parameter p and n repetitions we have

p(X = r|p) =
(
n

r

)
pr(1− p)(n−r).

We can thus write the likelihood out as

P1(D|p) = Kp50(1− p)26

where K = 436547. This follows from filling in the numbers into the product of binomials, assuming the
data points are IID, and by counting the numbers of each case (3 ones, 5 twos, 7 threes and 4 fours.
3× 1 + 5× 2 + 7× 3 + 4× 4 = 50. 19 data points. Maximum possible total count 4× 19 = 76 = 50 + 26).
Note also (

4
1

)
= 4,

(
4
2

)
= 6,

(
4
3

)
= 4,

(
4
4

)
= 1.

Thus likelihood has a form of a scaled beta distribution, so, with prior P (p) = 1 we can work out the
integral: ∫ 1

0

dp p50(1− p)26 =
Γ(51)Γ(27)

Γ(78)

from looking at the normalisation constant for the Beta distribution.
Hence the P1(D) is

436547 Γ(51)Γ(27)
Γ(78)

To compute this we need to use log space and the gammaln function. The resulting marginal likelihood
is 6.89× 10−13.

For the uniform distribution P2(D) there are options of 0, 1, 2, 3, 4 sales. Hence the uniform probability
is 0.2 for each possibility for each data point. 19 data points results in a likelihood of 0.219 = 5.25×10−14.

Now combine this with the priors for the two models (0.8 and 0.2), and the posterior probablity is
about 0.98 in favour of the salesman being an honest chappie.
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