1. Probability. Lois knows that on average radio station RANDOM-FM plays 1 out of 4 of her requests. If she makes 3 requests, what is the probability that at least one request is played?

2. Let \(A \) and \(v \) be defined as

\[
A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & -3 \\ 3 & -3 & -3 \end{pmatrix} \quad v = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}
\]

Calculate \(Av \). Is \(v \) an eigenvector of \(A \), and if so what is the corresponding eigenvalue?

3. A random vector \(x \) has zero mean a diagonal covariance

\[
E(xx^T) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\]

where \(E \) stands for expectation (or mean average) of a random variable. If \(y = A^T x \) (using \(A \) from Q1) what is the covariance of the resulting random vector \(y \): \(E(yy^T) \)? You may use the fact that expectation is linear: \(E(Rxx^TS) = RE(xx^T)S \). This shows how covariances change under linear transformations.

4. Find the partial derivatives of the function \(f(x, y, z) = (x + 2y)^2 \sin(xy) \).

5. Let \(x \) be a Gaussian random variable with mean \(\mu \) and variance \(\sigma^2 \). What is the expected value of \(2x^2 \). Show what form the distribution of \(2(x - \mu)^2 \) takes. Hint: the distribution of \(x^2 \) for a standard normal \((N(0,1)) \) is chi-squared distributed.

The following ones should be discussed in the tutorial

6. You have data consisting of records of the form \((x_1, x_2, x_3, y)\) where \(x_1, x_2\) and \(x_3\) are features, and \(y\) is a class label. Each element takes the value 0 or 1.
Define clearly and precisely the Naive Bayes classification method for obtaining the probability of \(y \) given the values of the other attributes. Show that the maximum likelihood estimate of the parameter \(p(x_i = 0|y = 1) \) is proportional to the number of times attribute \(i \) is 0 for class 1 data. Convince yourself that you could use a similar method to show that \(p(y = 1) \) is proportional to the number of times class 1 occurs in the data.

The training data has the form

\[
(1, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (0, 0, 0, 0), (1, 1, 1, 1), (0, 0, 0, 0), (1, 0, 1, 0)
\]

- Using Naive Bayes on this data, what is the probability that \(y = 1 \) given \(x_1 = 1, x_2 = 1 \) and \(x_3 = 0 \)?
- Using Naive Bayes on this data, what is the probability that \(y = 0 \) given \(x_1 = 1, x_2 = 1 \) and \(x_3 = 0 \)?
- Using Naive Bayes on this data, what is the highest posterior classification for \(y \) given \(x_1 = 1 \)?

7. If \(a \) and \(b \) are \(D \times 1 \) column vectors and \(M \) is a \(D \times D \) symmetric matrix, show that \(a^T M b = b^T M a \).

8. Consider the Gaussian distribution

\[
p(x) \propto \exp \left\{ -\frac{1}{2} (x^T A x - 2 x^T b) \right\}
\]

where \(A \) is a symmetric matrix. Show that the mean and covariance are given by

\[
\text{mean}(x) = A^{-1} b, \quad \text{cov}(x) = A^{-1}.
\]

9. Consider a bivariate Gaussian \(p(x_1, x_2) = N(x|\mu, \Sigma) \) with

\[
\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix}
\]

a. What is \(p(x_1) \)?

b. Suppose \(\mu = 0 \). \(p(x_1|x_2) \) is a Gaussian. Write down its mean and variance (using the formulae given in the Gaussian lecture).

c. Contrast your answers from parts a. and b. Sketch the conditional mean as a function of \(x_2 \).

d. **Bonus question.** Derive the form of \(p(x_1|x_2) \) from first principles. **HINT:** \(p(x_1|x_2) \propto p(x_1, x_2) \) when \(x_2 \) is viewed as fixed.

10. (If there is time.) Suppose that \(X \) and \(Y \) are independent and each is uniformly distributed on \((0, 1)\). Let \(U = X + Y \) and \(V = X - Y \).

- Sketch the range (or region of non zero probability) of \((X, Y)\) and the range of \((U, V)\).
- Find the density function of \((U, V)\).
- Find the density function of \(U \).
- Find the density function of \(V \).