PCA applied to bodies

Freifeld and Black, ECCV 2012

PCA applied to DNA

Novembre et al. (2008) — doi:10.1038/nature07331
Carefully selected both individuals and features

1,387 individuals

197,146 single nucleotide polymorphisms (SNPs)

Each person reduced to two(!) numbers with PCA
MSc course enrollment data

Binary $S \times C$ matrix M

$M_{sc} = 1$, if student s taking course c

Each course is a length S vector

. . . OR each student is a length C vector
Truncated SVD

\[
\begin{bmatrix}
X_{11} & X_{12} & \cdots & X_{1D} \\
X_{21} & X_{22} & \cdots & X_{2D} \\
X_{31} & X_{32} & \cdots & X_{3D} \\
\vdots & \vdots & \ddots & \vdots \\
X_{N1} & X_{N2} & \cdots & X_{ND}
\end{bmatrix}
\approx
\begin{bmatrix}
U_{11} & \cdots & U_{1K} \\
U_{21} & \cdots & U_{2K} \\
U_{31} & \cdots & U_{3K} \\
\vdots & \ddots & \vdots \\
U_{N1} & \cdots & U_{NK}
\end{bmatrix}
\begin{bmatrix}
S_{11} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & S_{KK}
\end{bmatrix}
\begin{bmatrix}
V_{11} & V_{21} & \cdots & V_{D1} \\
V_{1K} & V_{2K} & \cdots & V_{DK}
\end{bmatrix}
\]

% PCA via SVD, for zero-mean X:
% \([U, S, V] = \text{svd}(X, 0);\)
% \(U = U(:, 1:K);\)
% \(S = S(1:K, 1:K);\)
% \(V = V(:, 1:K);\)
% \(X_{\text{dim}} = U*S;\)
% \(X_{\text{proj}} = U*S*V';\)

PCA summary

Project data onto major axes of covariance
\(X^T X\) is covariance if make data zero mean

Low-dim coordinates can be useful:
— visualization
— if can’t cope with high-dim data

Can project back into original space:
— detail is lost: still in \(K\)-dim subspace
— PCA minimizes the square error

PPCA: Probabilistic PCA

Gaussian model: \(\Sigma = WW^T + \sigma^2 I\)

\(W\) is \(D \times K\), \(\sigma^2\) small \(\Rightarrow\) nearly low-rank
\(W\) is also orthogonal

As \(\sigma^2 \to 0\), recover PCA.

Need \(\sigma^2 > 0\) to explain data

Special case of factor analysis: \(\Sigma = WW^T + \Phi\), with \(\Phi\) diagonal

Dim reduction in other models

Can replace \(x\) with \(Ax\) in any model

\(A\) is a \(K \times D\) matrix of projection params

Large \(D\): a lot of extra parameters

NB: Neural nets already have such projections
Practical tip

Scale features to have unit variance
Equivalently: find eigenvectors of correlation rather than covariance

Avoids issues with (arbitrary?) scaling.
If multiply feature by \(10^9\), PC points along that feature

E.g., if change unit of feature from metres to nanometres