Deterministic Approximations 1

Motivation:

Representing distributions more compactly and often more quickly than a bag of samples from MCMC

lain Murray
http://iainmurray.net/

Example: inferring dark matter

herently into a field of random would get a field that to zero. If we can u to zero in the ce.

Matter makes the poet.

Should be able to determine the central centra

http://www.kaggle.com/c/DarkWorlds http://homepages.inf.ed.ac.uk/imurray2/pub/12kaggle_dark/

These slides are for motivation. Details about dark matter non-examinable!

Answer is obvious

Could optimize likelihood of dark matter position

Faster than MCMC!

Want some way to report error bars though.

Usually dark matter locations not obvious. . .

Summarizing beliefs?

- Average/mean sample?
- Most probable sample?
- Cluster?

I have several answers. But still a research question. For this course:

Some complicated distributions most easily represented by samples

Then predict under each possible world

Lower dimensional example

A posterior over some quantity lpha from http://iopscience.iop.org/0004-637%/711/2/1157/ Might summarize with the vertical credible intervals containing 95% and 99% of probability mass. Mean, mode, median?

Red vertical bar is the mean (not a probable point, note log scale) Median? Mode?

from http://link.springer.com/chapter/10.1007%2F11736790_3

Gaussian approximations

Finite parameter vector $\boldsymbol{\theta}$

 $P(\theta \,|\, lots \,\, of \,\, data)$ often nearly Gaussian around the mode

Need to identify which Gaussian it is: mean, covariance