
Markov chain Monte Carlo

— Markov chain Monte Carlo (MCMC)

— Gibbs and Metropolis–Hastings

— Slice sampling

— Practical details

Iain Murray
http://iainmurray.net/

Reminder

Need to sample large, non-standard distributions:

P (x |D) ≈ 1

S

S∑
s=1

P (x |θ), θ ∼ P (θ |D) = P (D|θ)P (θ)
P (D)

Importance sampling weights

w =0.00548 w =1.59e-08 w =9.65e-06 w =0.371 w =0.103

w =1.01e-08 w =0.111 w =1.92e-09 w =0.0126 w =1.1e-51

Metropolis algorithm

• Perturb parameters: Q(θ′; θ), e.g. N (θ, σ2)

• Accept with probability min

(
1,
P̃ (θ′|D)
P̃ (θ|D)

)
• Otherwise keep old parameters

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

This subfigure from PRML, Bishop (2006)Detail: Metropolis, as stated, requires Q(θ′; θ) = Q(θ; θ′)

>20,000 citations

Target distribution

P (x) =
1

Z
e−E(x)

e.g. x = E(x) =
∑

(i,j)∈edges

Wijxixj, xi∈{±1}

Local moves

↙ ↓ ↘ Q(x′;x)

Markov chain exploration

→ →

↓
Goal: a Markov chain,

xt ∼ T (xt←xt−1), such that:

P (x(t)) = e−E(x(t))/Z for large t.

Invariant/stationary condition

If x(t−1) is a sample from P ,

x(t) is also a sample from P .

∑
x

T (x′←x)P (x) = P (x′)

Ergodicity

Unique invariant distribution

if ‘forget’ starting point, x(0)

Quick review

MCMC: biased random walk exploring a target dist.

Markov steps,

x(s) ∼ T
(
x(s)←x(s−1)

)
MCMC gives approximate,

correlated samples

EP [f] ≈
1

S

S∑
s=1

f(x(s))

T must leave target invariant

T must be able to get everywhere in K steps (for some K)

Gibbs sampling

Pick variables in turn or randomly,

and resample P (xi|xj 6=i)

z1

z2
L

l ?

Ti(x
′←x) = P (x′i |xj 6=i) δ(x′j 6=i − xj 6=i)

Gibbs sampling correctness

P (x) = P (xi |x\i)P (x\i)

Simulate by drawing x\i, then xi |x\i

Draw x\i: sample x, throw initial xi away

Reverse operators

If T leaves P (x) stationary, define a reverse operator

R(x←x′) =
T (x′←x)P (x)∑
x T (x

′←x)P (x)
=
T (x′←x)P (x)

P (x′)
.

A necessary condition: there exists R such that:

T (x′←x)P (x) = R(x←x′)P (x′), ∀x, x′.

If R = T , known as detailed balance (not necessary)

Balance condition

T (x′← x)P (x) = R(x← x′)P (x′)

Implies that P (x) is left invariant:∑
x

T (x′←x)P (x) = P (x′)

�
��
�
��
�
��
�
��
�
��
�
��*1∑

x

R(x←x′)

Metropolis–Hastings

Arbitrary proposals ∼ Q:

Q(x′;x)P (x) 6= Q(x;x′)P (x′)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

PRML, Bishop (2006)

Satisfies detailed balance by rejecting moves:

T (x′←x) =


Q(x′;x)min

(
1, P (x′)Q(x;x′)

P (x)Q(x′;x)

)
x′ 6= x

. . . x′=x

Metropolis–Hastings
Transition operator

• Propose a move from the current state Q(x′;x), e.g. N (x, σ2)

• Accept with probability min
(
1, P (x′)Q(x;x′)

P (x)Q(x′;x)

)
• Otherwise next state in chain is a copy of current state

Notes

• Can use P ∗ ∝ P (x); normalizer cancels in acceptance ratio

• Satisfies detailed balance (shown below)

• Q must be chosen so chain is ergodic

P (x) · T (x
′←x) = P (x) ·Q(x

′
; x)min

(
1,

P (x′)Q(x; x′)
P (x)Q(x′; x)

)
= min

(
P (x)Q(x

′
; x), P (x

′
)Q(x; x

′
)
)

= P (x
′
) ·Q(x; x

′
)min

(
1,

P (x)Q(x′; x)
P (x′)Q(x; x′)

)
= P (x

′
) · T (x←x

′
)

Matlab/Octave code for demo

function samples = dumb_metropolis(init, log_ptilde, iters, sigma)

D = numel(init);

samples = zeros(D, iters);

state = init;

Lp_state = log_ptilde(state);

for ss = 1:iters

% Propose

prop = state + sigma*randn(size(state));

Lp_prop = log_ptilde(prop);

if log(rand) < (Lp_prop - Lp_state)

% Accept

state = prop;

Lp_state = Lp_prop;

end

samples(:, ss) = state(:);

end

Step-size demo

Explore N (0, 1) with different step sizes σ
sigma = @(s) plot(dumb_metropolis(0, @(x)-0.5*x*x, 1e3, s));

sigma(0.1)

0 100 200 300 400 500 600 700 800 900 1000
−4

−2

0

2

4

99.8% accepts

sigma(1)

0 100 200 300 400 500 600 700 800 900 1000
−4

−2

0

2

4

68.4% accepts

sigma(100)

0 100 200 300 400 500 600 700 800 900 1000
−4

−2

0

2

4

0.5% accepts

Diffusion time

Q

P

L

Generic proposals use

Q(x′;x) = N (x, σ2)

σ large → many rejections

σ small → slow diffusion:

∼(L/σ)2 iterations required

Adapted from MacKay (2003)

An MCMC strategy

Come up with good proposals Q(x′;x)

Combine transition operators:

x1 ∼ TA(·←x0)

x2 ∼ TB(·←x1)

x3 ∼ TC(·←x2)

x4 ∼ TA(·←x3)

x5 ∼ TB(·←x4)

. . .

Slice sampling idea

Sample point uniformly under curve P ∗(x) ∝ P (x)

x

u

(x, u)

P̃ (x)

p(u|x) = Uniform[0, P ∗(x)]

p(x|u) ∝
{
1 P ∗(x) ≥ u
0 otherwise

= “Uniform on the slice”

Slice sampling

Unimodal conditionals

x

u

(x, u)

x

u

(x, u)

x

u

(x, u)

• bracket slice

• sample uniformly within bracket

• shrink bracket if P ∗(x) < u (off slice)

• accept first point on the slice

Slice sampling

Multimodal conditionals

x

u

(x, u)

P̃ (x)

• place bracket randomly around point

• linearly step out until bracket ends are off slice

• sample on bracket, shrinking as before

Satisfies detailed balance, leaves p(x|u) invariant

Slice sampling

Advantages of slice-sampling:

• Easy — only requires P ∗(x) ∝ P (x)
• No rejections

• Tweak params not too important

There are more advanced versions.
Neal (2003) contains many ideas.

Summary

• We need approximate methods to solve sums/integrals

• Monte Carlo does not explicitly depend on dimension.

Using samples from simple Q(x) only works in low dimensions.

• Markov chain Monte Carlo (MCMC) can make local moves.

Sample from complex distributions, even in high dimensions.

• simple computations ⇒ “easy” to implement

(harder to diagnose).

How should we run MCMC?

• The samples aren’t independent. Should we thin,

only keep every Kth sample?

• Arbitrary initialization means starting iterations are bad.

Should we discard a “burn-in” period?

• Maybe we should perform multiple runs?

• How do we know if we have run for long enough?

Forming estimates

Approximately independent samples can be obtained by thinning.

However, all the samples can be used.
Use the simple Monte Carlo estimator on MCMC samples. It is:

— consistent

— unbiased if the chain has “burned in”

The correct motivation to thin: if computing f(x(s)) is expensive

In some special circumstances strategic thinning can help.
Steven N. MacEachern and Mario Peruggia, Statistics & Probability Letters, 47(1):91–98, 2000.
http://dx.doi.org/10.1016/S0167-7152(99)00142-X — Thanks to Simon Lacoste-Julien for the reference.

Empirical diagnostics

Rasmussen (2000)

Recommendations

For diagnostics:
Standard software packages like R-CODA

For opinion on thinning, multiple runs, burn in, etc.
Practical Markov chain Monte Carlo
Charles J. Geyer, Statistical Science. 7(4):473–483, 1992.

http://www.jstor.org/stable/2246094

Consistency checks

Do I get the right answer on tiny versions

of my problem?

Can I make good inferences about synthetic data

drawn from my model?

Getting it right: joint distribution tests of posterior simulators,

John Geweke, JASA, 99(467):799–804, 2004.

Posterior Model checking: Gelman et al. Bayesian Data Analysis

textbook and papers.

Getting it right

θ

y

We write MCMC code to update θ |y

Idea: also write code to sample y |θ

Both codes leave P (θ, y) invariant

Run codes alternately. Check θ’s match prior

Summary

Write down the probability of everything.

Condition on what you know,
sample everything that you don’t.

Samples give plausible explanations:
— Look at them
— Average their predictions

