Monte Carlo

Monte Carlo and Insomnia

- Monte Carlo basics and Motivation
- Rejection sampling
- Importance sampling
- Next time: Markov chain Monte Carlo

Enrico Fermi (1901–1954) took great delight in astonishing his colleagues with his remakably accurate predictions of experimental results. . . he revealed that his "guesses" were really derived from the statistical sampling techniques that he used to calculate with whenever insomnia struck in the wee morning hours!

-The beginning of the Monte Carlo method, N. Metropolis

lain Murray http://iainmurray.net/

A statistical problem

What is the average height of the people in this room? Method: measure our heights, add them up and divide by N.

What is the average height f of people p in Edinburgh \mathcal{E} ?

$$\begin{split} E_{p\in\mathcal{E}}[f(p)] &\equiv \frac{1}{|\mathcal{E}|} \sum_{p\in\mathcal{E}} f(p), \quad \text{``intractable'' ?} \\ &\approx \frac{1}{S} \sum_{s=1}^{S} f(p^{(s)}), \quad \text{for random survey of } S \text{ people } \{p^{(s)}\} \in \mathcal{E} \end{split}$$

Simple Monte Carlo

In general:

$$\int f(x)P(x) \, \mathrm{d}x \; \approx \; \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}), \ x^{(s)} \sim P(x)$$

Example: making predictions

$$P(x|\mathcal{D}) = \int P(x|\theta) p(\theta|\mathcal{D}) d\theta$$
$$\approx \frac{1}{S} \sum_{s=1}^{S} P(x|\theta^{(s)}), \quad \theta^{(s)} \sim p(\theta|\mathcal{D})$$

Many other integrals appear throughout statistical machine learning

Surveying works for large and notionally infinite populations.

Properties of Monte Carlo

Estimator:
$$\int f(x) P(x) dx \approx \hat{f} \equiv \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}), x^{(s)} \sim P(x)$$

Estimator is unbiased:

$$\mathbb{E}_{P(\{x^{(s)}\})}\left[\hat{f}\right] = \frac{1}{S} \sum_{s=1}^{S} \mathbb{E}_{P(x)}[f(x)] = \mathbb{E}_{P(x)}[f(x)]$$

Variance shrinks $\propto 1/S$:

$$\operatorname{var}_{P(\{x^{(s)}\})}\left[\hat{f}\right] = \frac{1}{S^2} \sum_{s=1}^{S} \operatorname{var}_{P(x)}[f(x)] = \operatorname{var}_{P(x)}[f(x)] / S$$

"Error bars" shrink like \sqrt{S}

Aside: don't always sample!

"Monte Carlo is an extremely bad method; it should be used only when all alternative methods are worse."

— Alan Sokal, 1996

A dumb approximation of $\boldsymbol{\pi}$

$$P(x,y) = \begin{cases} 1 & 0 < x < 1 \text{ and } 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$
$$\pi = 4 \iint \mathbb{I}\left((x^2 + y^2) < 1\right) P(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

octave:1> S=12; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
ans = 3.3333
octave:2> S=1e7; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
ans = 3.1418</pre>

Alternatives to Monte Carlo

There are other methods of numerical integration!

Example: (nice) 1D integrals are easy:

octave:1> 4 * quadl(@(x) sqrt(1-x.^2), 0, 1, tolerance)

Gives π to 6 dp's in 108 evaluations, machine precision in 2598. (NB Matlab's quadl fails at tolerance=0, but Octave works.)

In higher dimensions sometimes determinstic approximations work: Variational Bayes, Laplace, . . . (covered later)

Reminder

Want to sample to approximate expectations:

$$\int f(x)P(x) \, \mathrm{d}x \; \approx \; \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}), \ x^{(s)} \sim P(x)$$

How do we get the samples?

Sampling simple distributions

This book (free online) explains how some of them work

http://cg.scs.carleton.ca/~luc/rnbookindex.html

Importance sampling

Rewrite integral: expectation under simple distribution *Q*:

$$\int f(x) P(x) dx = \int f(x) \frac{P(x)}{Q(x)} Q(x) dx,$$
$$\approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}) \frac{P(x^{(s)})}{Q(x^{(s)})}, \quad x^{(s)} \sim Q(x)$$

Simple Monte Carlo applied to any integral. Unbiased and independent of dimension?

Importance sampling (2)

If only know $P(x) = P^*(x)/\mathcal{Z}_P$ up to constant:

$$\int f(x) P(x) \, \mathrm{d}x \ \approx \ \frac{\mathcal{Z}_Q}{\mathcal{Z}_P} \frac{1}{S} \sum_{s=1}^S f(x^{(s)}) \frac{P^*(x^{(s)})}{\underbrace{Q^*(x^{(s)})}_{w^{*(s)}}}, \ x^{(s)} \sim Q(x)$$

$$\approx \frac{\frac{1}{2}}{\frac{1}{S}} \sum_{s=1}^{S} f(x^{(s)}) \frac{w^{*(s)}}{\frac{1}{S} \sum_{s'} w^{*(s')}}$$

This estimator is **consistent** but **biased**

Exercise: Prove that $Z_P/Z_Q \approx \frac{1}{S} \sum_s w^{*(s)}$

Application to large problems

Approximations scale badly with dimensionality

Example: $P(x) = \mathcal{N}(0, \mathbb{I}), \quad Q(x) = \mathcal{N}(0, \sigma^2 \mathbb{I})$

Rejection sampling:

Requires $\sigma \geq 1$. Fraction of proposals accepted = σ^{-D}

Importance sampling:

 $\begin{aligned} \mathsf{Var}[P(x)/Q(x)] \ &= \ \left(\frac{\sigma^2}{2-1/\sigma^2}\right)^{D/2} - 1 \\ \text{Infinite } / \ \mathsf{undefined \ variance \ if \ } \sigma \leq 1/\sqrt{2} \end{aligned}$

Summary so far

- Monte Carlo approximate expectations with a sample average
- **Rejection sampling** draw samples from complex distributions
- Importance sampling apply Monte Carlo to 'any' sum/integral

Next: High dimensional problems: MCMC