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Monte Carlo and Insomnia

Enrico Fermi (1901–1954) took great

delight in astonishing his colleagues

with his remakably accurate predictions

of experimental results. . . he revealed

that his “guesses” were really derived

from the statistical sampling techniques

that he used to calculate with whenever

insomnia struck in the wee morning

hours!

—The beginning of the Monte Carlo method,

N. Metropolis



Linear Regression: Prior
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Prior P (θ)

Input → output mappings considered plausible before seeing data.



Linear Regression: Posterior
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P (θ |Data) ∝ P (Data | θ) P (θ)

Posterior much more compact than prior.



Linear Regression: Posterior
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P (θ |Data) ∝ P (Data | θ) P (θ)

Draws from posterior. Non-linear error envelope. Possible explanations linear.



Model mismatch
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What will Bayesian linear regression do?



Quiz

Given a (wrong) linear assumption, which explanations are

typical of the posterior distribution?
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A B C

D All of the above

E None of the above

Z Not sure



‘Underfitting’
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Posterior very certain despite blatant misfit. Prior ruled out truth.



Microsoft Kinect (Shotton et al., 2011)

Eyeball modelling assumptions

Generate training data

Random forest applied to fantasies



The need for integrals

p(y∗ |x∗,D) =
∫

dθ p(y∗, θ |x∗,D)

=

∫
dθ p(y∗ |θ, ���D) p(θ |����x∗,D)

y

x∗

p(y∗ |x∗,D)



A statistical problem

What is the average height of the people in this room?
Method: measure our heights, add them up and divide by N .

What is the average height f of people p in Edinburgh E?

Ep∈E[f(p)] ≡
1

|E|
∑
p∈E

f(p), “intractable”?

≈ 1

S

S∑
s=1

f
(
p(s)
)
, for random survey of S people {p(s)} ∈ E

Surveying works for large and notionally infinite populations.



Simple Monte Carlo

In general:∫
f(x)P (x) dx ≈ 1

S

S∑
s=1

f(x(s)), x(s) ∼ P (x)

Example: making predictions

P (x |D) =

∫
P (x |θ) p(θ |D) dθ

≈ 1

S

S∑
s=1

P (x |θ(s)), θ(s) ∼ p(θ |D)

Many other integrals appear throughout statistical machine learning



Properties of Monte Carlo

Estimator:

∫
f(x) P (x) dx ≈ f̂ ≡ 1

S

S∑
s=1

f(x(s)), x(s) ∼ P (x)

Estimator is unbiased:

EP ({x(s)})

[
f̂
]

=
1

S

S∑
s=1

EP (x) [f(x)] = EP (x) [f(x)]

Variance shrinks ∝ 1/S:

varP ({x(s)})

[
f̂
]

=
1

S2

S∑
s=1

varP (x) [f(x)] = varP (x) [f(x)] /S

“Error bars” shrink like
√
S



Aside: don’t always sample!

“Monte Carlo is an extremely bad method;
it should be used only when all alternative
methods are worse.”

— Alan Sokal, 1996



A dumb approximation of π

P (x, y) =

{
1 0<x<1 and 0<y<1

0 otherwise

π = 4

∫∫
I
(
(x2 + y2) < 1

)
P (x, y) dx dy

octave:1> S=12; a=rand(S,2); 4*mean(sum(a.*a,2)<1)

ans = 3.3333

octave:2> S=1e7; a=rand(S,2); 4*mean(sum(a.*a,2)<1)

ans = 3.1418



Alternatives to Monte Carlo

There are other methods of numerical integration!

Example: (nice) 1D integrals are easy:

octave:1> 4 * quadl(@(x) sqrt(1-x.^2), 0, 1, tolerance)

Gives π to 6 dp’s in 108 evaluations, machine precision in 2598.

(NB Matlab’s quadl fails at tolerance=0, but Octave works.)

In higher dimensions sometimes determinstic approximations work:

Variational Bayes, Laplace, . . . (covered later)



Reminder

Want to sample to approximate expectations:∫
f(x)P (x) dx ≈ 1

S

S∑
s=1

f(x(s)), x(s) ∼ P (x)

How do we get the samples?



Sampling simple distributions

Use library routines for
univariate distributions
(and some other special cases)

This book (free online) explains how

some of them work

http://cg.scs.carleton.ca/~luc/rnbookindex.html



Sampling discrete values

u ∼ Uniform[0, 1]

u=0.4 ⇒ x=b

There are more efficient ways for large numbers of values and samples. See Devroye book.



Sampling from densities

How to convert samples from a Uniform[0,1] generator:

p(y)

h(y)

y0

1

Figure from PRML, Bishop (2006)

h(y) =
∫ y
−∞ p(y

′) dy′

u ∼ Uniform[0,1]

Sample, y(u) = h−1(u)

Although we can’t always compute and invert h(y)



Sampling from densities

Draw points uniformly under the curve:

P (x)

xx(2) x(3) x(1) x(4)

Probability mass to left of point ∼ Uniform[0,1]



Rejection sampling

Sampling from π(x) using tractable q(x):

Figure credit: Ryan P. Adams



Importance sampling

Rewrite integral: expectation under simple distribution Q:

∫
f(x)P (x) dx =

∫
f(x)

P (x)

Q(x)
Q(x) dx,

≈ 1

S

S∑
s=1

f(x(s))
P (x(s))

Q(x(s))
, x(s) ∼ Q(x)

Simple Monte Carlo applied to any integral.

Unbiased and independent of dimension?



Importance sampling (2)

If only know P (x) = P ∗(x)/ZP up to constant:∫
f(x)P (x) dx ≈ ZQZP

1

S

S∑
s=1

f(x(s))
P ∗(x(s))

Q∗(x(s))︸ ︷︷ ︸
w∗(s)

, x(s) ∼ Q(x)

≈
�
�
�
�
�
��1

S

S∑
s=1

f(x(s))
w∗(s)

�
�
�
�1
S

∑
s′w

∗(s′)

This estimator is consistent but biased

Exercise: Prove that ZP/ZQ ≈ 1
S

∑
sw
∗(s)



Summary so far

• Monte Carlo
approximate expectations with a sample average

• Rejection sampling
draw samples from complex distributions

• Importance sampling
apply Monte Carlo to ‘any’ sum/integral

Next: High dimensional problems: MCMC



Application to large problems

Approximations scale badly with dimensionality

Example: P (x) = N (0, I), Q(x) = N (0, σ2I)

Rejection sampling:

Requires σ ≥ 1. Fraction of proposals accepted = σ−D

Importance sampling:

Var[P (x)/Q(x)] =
(

σ2

2−1/σ2
)D/2

− 1

Infinite / undefined variance if σ ≤ 1/
√
2



Reminder

Need to sample large, non-standard distributions:

P (x |D) ≈ 1

S

S∑
s=1

P (x |θ), θ ∼ P (θ |D) = P (D|θ)P (θ)
P (D)



Importance sampling weights

w =0.00548 w =1.59e-08 w =9.65e-06 w =0.371 w =0.103

w =1.01e-08 w =0.111 w =1.92e-09 w =0.0126 w =1.1e-51



Metropolis algorithm

• Perturb parameters: Q(θ′; θ), e.g. N (θ, σ2)

• Accept with probability min

(
1,
P̃ (θ′|D)
P̃ (θ|D)

)
• Otherwise keep old parameters
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This subfigure from PRML, Bishop (2006)Detail: Metropolis, as stated, requires Q(θ′; θ) = Q(θ; θ′)



>20,000 citations



Target distribution

P (x) =
1

Z
e−E(x)

e.g. x =



Local moves

↙ ↓ ↘ Q(x′;x)



Markov chain exploration

→ →

↓
Goal: a Markov chain,

xt ∼ T (xt←xt−1), such that:

P (x(t)) = e−E(x(t))/Z for large t.



Invariant/stationary condition

If x(t−1) is a sample from P ,

x(t) is also a sample from P .

∑
x

T (x′←x)P (x) = P (x′)



Ergodicity

Unique invariant distribution

if ‘forget’ starting point, x(0)



Quick review
MCMC: biased random walk exploring a target dist.

Markov steps,

x(s) ∼ T
(
x(s)←x(s−1)

)
MCMC gives approximate,

correlated samples

EP [f ] ≈
1

S

S∑
s=1

f(x(s))

T must leave target invariant

T must be able to get everywhere in K steps



Gibbs sampling

Pick variables in turn or randomly,

and resample P (xi|xj 6=i)

z1

z2
L

l ?

Ti(x
′←x) = P (x′i |xj 6=i) δ(x′j 6=i − xj 6=i)



Gibbs sampling correctness

P (x) = P (xi |x\i)P (x\i)

Simulate by drawing x\i, then xi |x\i

Draw x\i: sample x, throw initial xi away



Reverse operators

If T leaves P (x) stationary, define a reverse operator

R(x←x′) =
T (x′←x)P (x)∑
x T (x

′←x)P (x)
=
T (x′←x)P (x)

P (x′)
.

A necessary condition: there exists R such that:

T (x′←x)P (x) = R(x←x′)P (x′), ∀x, x′.

If R = T , known as detailed balance (not necessary)



Balance condition

T (x′← x)P (x) = R(x← x′)P (x′)

Implies that P (x) is left invariant:∑
x

T (x′←x)P (x) = P (x′)

�
��
�
��
�
��
�
��
�
��
�
��*1∑

x

R(x←x′)



Metropolis–Hastings

Arbitrary proposals ∼ Q:

Q(x′;x)P (x) 6= Q(x;x′)P (x′)
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PRML, Bishop (2006)

Satisfies detailed balance by rejecting moves:

T (x′←x) =


Q(x′;x)min

(
1, P (x′)Q(x;x′)

P (x)Q(x′;x)

)
x′ 6= x

. . . x′=x



Metropolis–Hastings

Transition operator

• Propose a move from the current state Q(x′;x), e.g. N (x, σ2)

• Accept with probability min
(
1, P (x′)Q(x;x′)

P (x)Q(x′;x)

)
• Otherwise next state in chain is a copy of current state

Notes

• Can use P ∗ ∝ P (x); normalizer cancels in acceptance ratio

• Satisfies detailed balance (shown below)

• Q must be chosen so chain is ergodic

P (x) · T (x
′←x) = P (x) ·Q(x

′
; x)min

(
1,

P (x′)Q(x; x′)
P (x)Q(x′; x)

)
= min

(
P (x)Q(x

′
; x), P (x

′
)Q(x; x

′
)
)

= P (x
′
) ·Q(x; x

′
)min

(
1,

P (x)Q(x′; x)
P (x′)Q(x; x′)

)
= P (x

′
) · T (x←x

′
)



Matlab/Octave code for demo
function samples = dumb_metropolis(init, log_ptilde, iters, sigma)

D = numel(init);

samples = zeros(D, iters);

state = init;

Lp_state = log_ptilde(state);

for ss = 1:iters

% Propose

prop = state + sigma*randn(size(state));

Lp_prop = log_ptilde(prop);

if log(rand) < (Lp_prop - Lp_state)

% Accept

state = prop;

Lp_state = Lp_prop;

end

samples(:, ss) = state(:);

end



Step-size demo

Explore N (0, 1) with different step sizes σ

sigma = @(s) plot(dumb_metropolis(0, @(x)-0.5*x*x, 1e3, s));

sigma(0.1)
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sigma(1)
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sigma(100)
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0.5% accepts



Diffusion time

Q

P

L

Generic proposals use

Q(x′;x) = N (x, σ2)

σ large → many rejections

σ small → slow diffusion:
∼(L/σ)2 iterations required

Adapted from MacKay (2003)



An MCMC strategy

Come up with good proposals Q(x′;x)

Combine transition operators:
x1 ∼ TA(·←x0)

x2 ∼ TB(·←x1)

x3 ∼ TC(·←x2)

x4 ∼ TA(·←x3)

x5 ∼ TB(·←x4)

. . .



Summary so far

• We need approximate methods to solve sums/integrals

• Monte Carlo does not explicitly depend on dimension,

although simple methods work only in low dimensions

• Markov chain Monte Carlo (MCMC) can make local moves.

By assuming less, it’s more applicable to higher dimensions

• simple computations ⇒ “easy” to implement

(harder to diagnose).


