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Overview

I The model selection problem

I Overfitting

I Validation set, cross validation

I Bayesian Model Comparison

I Reading: Murphy 1.4.7, 1.4.8, 6.5.3, 5.3; Barber 12.1-12.4,
13.2 up to end of 13.2.2
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Model Selection

I We may entertain different models for a dataset, M1, M2,
. . . , e.g. different numbers of basis functions, different
regularization parameters

I How should we choose amongst them?

I Example from supervised learning
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Loss and Training Error

I For input x the true target is y(x) and our prediction is f(x).
The loss function

L(y(x), f(x))

assesses errors in prediction
I Examples

I squared error loss (y(x)− f(x))2,
I 0-1 loss I(y(x), f(x)) for classification,
I log loss − log p(y(x)|f(x)) (probabilistic predictions)

I Training error

Etr =
1
N

N∑
n=1

L(y(xn), f(xn))

I Training error consistently decreases with model complexity
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Overfitting

I Generalization (or test) error

Egen =
∫
L(y(x), f(x)) p(x, y) dx dy

I Overfitting (Mitchell 1997, p. 67)
A hypothesis f is said to overfit the data if there exists some
alternative hypothesis f ′ such that f has a smaller training
error than f ′, but f ′ has a smaller generalization error than f .
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Validation Set

I Partition the available data into two: a training set (for fitting
the model), and a validation set (aka hold-out set) for
assessing performance

I Estimate the generalization error with

Eval =
1
V

V∑
v=1

L(y(xv), f(xv))

where we sum over cases in the validation set

I Unbiased estimator of the generalization error

I Suggested split: 70% training, 30% validation
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Cross Validation

I Split the data into K pieces (folds)

I Train on K − 1, test on the remaining fold

I Cycle through, using each fold for testing once

I Uses all data for testing, cf. the hold-out method

Figure credit: Murphy Fig 1.21(b)

7 / 20



Cross Validation: Example

0 5 10 15 20
−10

−5

0

5

10

15

20

ln lambda −20.135

0 5 10 15 20
−15

−10

−5

0

5

10

15

20

ln lambda −8.571

Figure credit: Murphy Fig 7.7

I Degree 14 polynomial with N = 21 datapoints

I Regularization term λwTw
I How to choose λ?
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Figure credit: Murphy Fig 7.7

I Left-hand end of x-axis ≡ low regularization

I Notice that training error increases monotonically with λ

I Miminum of test error is for an intermediate value of λ

I Both cross validation and a Bayesian procudure (coming
soon) choose regularized models
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Bayesian Model Comparison

I Have a set of different possible models

Mi ≡ p(D|θ,Mi) and p(θ|Mi)

for i = 1, . . . ,K
I Each model is set of distributions that have associated

parameters. Usually some models are more complex (have
more parameters) than others

I Bayesian way: Have a prior p(Mi) over the set of models Mi,
then compute posterior p(Mi|D) using Bayes’ rule

p(Mi|D) =
p(Mi)p(D|Mi)∑K

j=1 p(Mj)p(D|Mj)

I

p(D|M) =
∫
p(D|θ,M)p(θ|M) dθ

This is called the marginal likelihood or the evidence.
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Comparing models

Bayes factor =
P (D|M1)
P (D|M2)

P (M1|D)
P (M2|D)

=
P (M1)
P (M2)

.
P (D|M1)
P (D|M2)

Posterior ratio = Prior ratio× Bayes factor

Strength of evidence from Bayes factor (Kass, 1995; after Jeffreys, 1961)

1 to 3 Not worth more than a bare mention
3 to 20 Positive
20 to 150 Strong
> 150 Very strong
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Computing the Marginal Likelihood

I Exact for conjugate exponential models, e.g. beta-binomial,
Dirichlet-multinomial, Gaussian-Gaussian (for fixed variances)

I E.g. for Dirichlet-multinomial

p(D|M) =
Γ(α)

Γ(α+N)

r∏
i=1

Γ(αi +Ni)
Γ(αi)

I Also exact for (generalized) linear regression (for fixed prior
and noise variances)

I Otherwise various approximations (analytic and Monte Carlo)
are possible
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BIC approximation

BIC = log p(D|θ̂)− dof(θ̂)
2

logN

I Bayesian information criterion (Schwarz, 1978)

I θ̂ is MLE

I dof(θ̂) is the degrees of freedom in the model (∼ number of
parameters in the model)

I BIC penalizes ML score by a penalty term

I BIC is quite a crude approximation to the marginal likelihood
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I Why Bayesian model selection? Why not compute best fit
parameters and compare?

I More parameters=better fit to data. ML: bigger is better.

I But might be overfitting: only these parameters work. Many
others don’t.

I Prefer models that are unlikely to ‘accidentally’ explain the
data.
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Binomial Example

Example

You are an auditor of a firm. You receive details about the
sales that a particular salesman is making. He attempts to
make 4 sales a day to independent companies. You receive a list
of the number of sales by this agent made on a number of days.
Explain why you would expect the total number of sales to be
binomially distributed.
If the agent was making the sales numbers up as part of a
fraud, you might expect the agent (as he is a bit dim) to choose
the number of sales at random from a uniform distribution.
You are aware of the fraud possibility, and you understand
there is something like a 1/5 chance this salesman is involved.
Given daily sales counts of 1 2 2 4 1 4 3 2 4 1 3 3 2 4 3 3 2 3 3,
do you think the salesman is lying?
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Binomial Example

Example

Data: 1 2 2 4 1 4 3 2 4 1 3 3 2 4 3 3 2 3 3

I M = 1 - From P1(x|p) a binomial distribution Binomial(4).
Prior on p is uniform.

I M = 2 - From P2(x) a uniform distribution Uniform(0,. . . ,4).

I Discuss what you would do?

I P (M = 1) = 0.8.
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Binomial Example

Example

Data: 1 2 2 4 1 4 3 2 4 1 3 3 2 4 3 3 2 3 3

I M = 1 - From P1(x|p) a binomial distribution Binomial(4).
Prior on p is uniform.

I M = 2 - From P2(x) a uniform distribution Uniform(0,. . . ,4).

I P (M = 1) = 0.8.

P (D|M = 1) =
∫
dp P1(D|p)P (p) , P (D|M = 2) = P2(D)

P (M|D) =
P (D|M)P (M)

P (D|M = 1)P (M = 1) + P (D|M = 2)P (M = 2)

I Left as an exercise! (see tutorial)
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Linear Regression Example
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Summary

I Training and test error, overfitting

I Validation set, cross validation

I Bayesian Model Comparison

20 / 20


