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Classification or Regression?

I Classification: want to learn a discrete target variable

I Regression: want to learn a continuous target variable
I Linear regression, linear-in-the-parameters models

I Linear regression is a conditional Gaussian model
I Maximum likelihood solution - ordinary least squares
I Can use nonlinear basis functions
I Ridge regression
I Full Bayesian treatment

I Reading: Murphy chapter 7 (not all sections needed), Barber
(17.1, 17.2, 18.1.1)
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One Dimensional Data

−2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3 / 24

Linear Regression

I Simple example: one-dimensional linear regression.

I Suppose we have data of the form (x, y), and we believe the
data should fol low a straight line: the data should have a
straight line fit of the form y = w0 + w1x.

I However we also believe the target values y are subject to
measurement error, which we will assume to be Gaussian. So
y = w0 + w1x+ η where η is a Gaussian noise term, mean 0,
variance σ2

η.
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Figure credit: http://jedismedicine.blogspot.co.uk/2014/01/

I Linear regression is just a conditional version of estimating a
Gaussian (conditional on the input x)
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Generated Data
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Multivariate Case

I Consider the case where we are interested in y = f(x) for D
dimensional x: y = w0 + w1x1 + . . . wDxD + η, where
η ∼ Gaussian(0, σ2

η).

I Examples? Final grade depends on time spent on work for
each tutorial.

I We set w = (w0, w1, . . . wD)T and introduce φ = (1,xT )T ,
then we can write y = wTφ + η instead

I This implies p(y|φ,w) = N(y; wTφ, σ2
η)

I Assume that training data is iid, i.e.,
p(y1, . . . yN |x1, . . . ,xN ,w) =

∏N
n=1 p(y

n|xn,w)
I Given data {(xn, yn), n = 1, 2, . . . , N}, the log likelihood is

L(w) = logP (y1 . . . yN |x1 . . .xN ,w)

= − 1
2σ2

η

N∑
n=1

(yn −wTφn)2 − N

2
log(2πσ2

η)
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Minimizing Squared Error

L(w) = − 1
2σ2

η

N∑
n=1

(yn −wTφn)2 − N

2
log(2πσ2

η)

= −C1

N∑
n=1

(yn −wTφn)2 − C2

where C1 > 0 and C2 don’t depend on w. Now
I Multiplying by a positive constant doesn’t change the

maximum
I Adding a constant doesn’t change the maximum.
I

∑N
n=1(yn −wTφn)2 is the sum of squared errors made if you

use w
So maximizing the likelihood is the same as minimizing the total
squared error of the linear predictor.

So you don’t have to believe the Gaussian assumption. You can
simply believe that you want to minimize the squared error.
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Maximum Likelihood Solution I

I Write Φ = (φ1,φ2, . . . ,φN )T , and y = (y1, y2, . . . , yN )T

I Φ is called the design matrix, has N rows, one for each
example

L(w) = − 1
2σ2

η

(y − Φw)T (y − Φw)− C2

I Take derivatives of the log likelihood:

∇wL(w) = − 1
σ2
η

ΦT (Φw − y)
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Maximum Likelihood Solution II

I Setting the derivatives to zero to find the minimum gives

ΦTΦŵ = ΦTy

I This means the maximum likelihood ŵ is given by

ŵ = (ΦTΦ)−1ΦTy

The matrix (ΦTΦ)−1ΦT is called the pseudo-inverse.

I Ordinary least squares (OLS) solution for w
I MLE for the variance

σ̂2
η =

1
N

N∑
n=1

(yn −wTφn)2

i.e. the average of the squared residuals
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Generated Data

−2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

The black line is the maximum likelihood fit to the data.

11 / 24

Nonlinear regression

I All this just used φ.

I We chose to put the x values in φ, but we could have put
anything in there, including nonlinear transformations of the x
values.

I In fact we can choose any useful form for φ so long as the final
derivatives are linear wrt w. We can even change the size.

I We already have the maximum likelihood solution in the case
of Gaussian noise: the pseudo-inverse solution.

I Models of this form are called general linear models or
linear-in-the-parameters models.
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Example:polynomial fitting

I Model y = w1 + w2x+ w2x
2 + w4x

3.

I Set φ = (1, x, x2, x3)T and w = (w1, w2, w3, w4).

I Can immediately write down the ML solution:
w = (ΦTΦ)−1ΦTy, where Φ and y are defined as before.

I Could use any features we want: e.g. features that are only
active in certain local regions (radial basis functions, RBFs).

Figure credit: David Barber, BRML Fig 17.6
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Dimensionality issues

I How many radial basis functions do we need?

I Suppose we need only three per dimension

I Then we would need 3D for a D-dimensional problem

I This becomes large very fast: this is commonly called the
curse of dimensionality

I Gaussian processes (see later) can help with these issues

14 / 24

Higher dimensional outputs

I Suppose the target values are vectors.

I Then we introduce different wi for each yi.

I Then we can do regression independently in each of those
cases.
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Adding a Prior
I Put prior over parameters, e.g.,

p(y|φ,w) = N(y; wTφ, σ2
η)

p(w) = N(w; 0, τ2I)

I I is the identity matrix
I The log posterior is

log p(w|D) = const− 1
2σ2

η

N∑
n=1

(yn −wTφn)2 − N

2
log(2πσ2)

− 1
2τ2

wTw︸ ︷︷ ︸
penalty on large weights

−D
2

log(2πτ2)

I MAP solution can be computed analytically. Derivation
almost the same as with MLE (where λ = σ2

η/τ
2)

wMAP = (ΦTΦ + λI)−1ΦTy

This is called ridge regression
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Effect of Ridge Regression

I Collecting constant terms from log posterior on last slide

log p(w|D) = const− 1
2σ2

η

N∑
n=1

(yn−wTφn)2− 1
2τ2

wTw︸ ︷︷ ︸
||w||22. penalty term

I This is called `2 regularization or weight decay. The second
term is the squared Euclidean (also called `2) norm of w.

I The idea is to reduce overfitting by forcing the function to be
simple. The simplest possible function is constant w = 0, so
encourage ŵ to be closer to that.

I τ is a parameter of the method. Trades off between how well
you fit the training data and how simple the method is. Most
commonly set via cross validation.

I Regularization is a general term for adding a “second term” to
an objective function to encourage simple models.
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Effect of Ridge Regression (Graphic)
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Figure credit: Murphy Fig 7.7

Degree 14 polynomial fit with and without regularization
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Why Ridge Regression Works (Graphic)
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Figure credit: Murphy Fig 7.9
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Bayesian Regression

I Bayesian regression model

p(y|φ,w) = N(y; wTφ, σ2
η)

p(w) = N(w; 0, τ2I)

I Possible to compute the posterior distribution analytically,
because linear Gaussian models are jointly Gaussian (see
Murphy §7.6.1 for details)

p(w|Φ,y, σ2
η) ∝ p(w)p(y|Φ, σ2

η) = N(w|wN , VN )

wN =
1
σ2
η

VNΦTy

VN = σ2
η(σ

2
η/τ

2I + ΦTΦ)−1
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Making predictions

I For a new test point x∗ with corresponding feature vector φ∗,
we have that

f(x∗) = wTφ∗ + η

where w ∼ N(wN , VN ).

I Hence

p(y∗|x∗,D) ∼ N(wT
Nφ∗, (φ∗)TVNφ∗ + σ2

η)
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Example of Bayesian Regression
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Figure credit: Murphy Fig 7.11
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Another Example
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Figure credit: Murphy Fig 7.12

Fitting a quadratic. Notice how the error bars get larger further
away from training data
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Summary

I Linear regression is a conditional Gaussian model

I Maximum likelihood solution - ordinary least squares

I Can use nonlinear basis functions

I Ridge regression

I Full Bayesian treatment
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