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Outline

I What is probability?

I Random Variables (discrete and continuous)

I Expectation

I Joint Distributions

I Marginal Probability

I Conditional Probability

I Chain Rule

I Bayes’ Rule

I Independence

I Conditional Independence

I Some Probability Distributions (for reference)

I Reading: Murphy secs 2.1-2.4
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What is probability?

I Quantification of uncertainty

I Frequentist interpretation: long run frequenies of events

I Example: The probability of a particular coin landing heads up
is 0.43

I Bayesian interpretation: quantify our degrees of belief about
something

I Example: the probability of it raining tomorrow is 0.3

I Not possible to repeat “tomorrow” many times

I Basic rules of probability are the same, no matter which
interpretation is adopted
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Random Variables

I A random variable (RV) X denotes a quantity that is subject
to variations due to chance

I May denote the result of an experiment (e.g. flipping a coin)
or the measurement of a real-world fluctuating quantity (e.g.
temperature)

I Use capital letters to denote random variables and lower case
letters to denote values that they take, e.g. p(X = x)

I An RV may be discrete or continuous

I A discrete variable takes on values from a finite or countably
infinite set

I Probability mass function p(X = x) for discrete random
variables
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I Examples:
I Colour of a car blue, green, red
I Number of children in a family 0, 1, 2, 3, 4, 5, 6, > 6
I Toss two coins, let X = (number of heads)2. X can take on

the values 0, 1 and 4.

I Example p(Colour = red) = 0.3
I
∑

x p(x) = 1
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Continuous RVs

I Continuous RVs take on values that vary continuously within
one or more real intervals

I Probability density function (pdf) p(x) for a continuous
random variable X

p(a ≤ X ≤ b) =
∫ b

a
p(x)dx

therefore
p(x ≤ X ≤ x+ δx) ' p(x)δx

I
∫
p(x)dx = 1 (but values of p(x) can be greater than 1)

I Examples (coming soon): Gaussian, Gamma, Exponential,
Beta
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Expectation

I Consider a function f(x) mapping from x onto numerical
values

E[f(x)] =
∑
x

f(x)p(x)

=
∫
f(x)p(x)dx

for discrete and continuous variables resp.

I f(x) = x, we obtain the mean, µx
I f(x) = (x− µx)2 we obtain the variance
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Joint distributions

I Properties of several random variables are important for
modelling complex problems

I p(X1 = x1, X2 = x2, . . . , XD = xD)
I “,” is read as “and”

I Examples about Grade and Intelligence (from Koller and
Friedman, 2009)

Intelligence = low Intelligence = high
Grade = A 0.07 0.18
Grade = B 0.28 0.09
Grade = C 0.35 0.03
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Marginal Probability

I The sum rule
p(x) =

∑
y

p(x, y)

I p(Grade = A) ??

I Replace sum by an integral for continuous RVs
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Conditional Probability

I Let X and Y be two disjoint groups of variables, such that
p(Y = y) > 0. Then the conditional probability distribution
(CPD) of X given Y = y is given by

p(X = x|Y = y) = p(x|y) =
p(x,y)
p(y)

I Product rule

p(X,Y) = p(X)p(Y|X) = p(Y)p(X|Y)

I Example: In the grades example, what is
p(Intelligence = high|Grade = A)?

I
∑

x p(X = x|Y = y) = 1 for all y
I Can we say anything about

∑
y p(X = x|Y = y) ?
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Chain Rule

The chain rule is derived by repeated application of the product
rule

p(X1, . . . , XD) = p(X1, . . . , XD−1)p(XD|X1, . . . , XD−1)
= p(X1, . . . , XD−2)p(XD−1|X1, . . . , XD−2)

p(XD|X1, . . . , XD−1)
= . . .

= p(X1)
D∏

i=2

p(Xi|X1, . . . , Xi−1)

I Exercise: give six decompositions of p(x, y, z) using the chain
rule
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Bayes’ Rule

I From the product rule,

p(X|Y) =
p(Y|X)p(X)

p(Y)

I From the sum rule the denominator is

p(Y) =
∑
X

p(Y|X)p(X)
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Probabilistic Inference using Bayes’ Rule

I Tuberculosis (TB) and a skin test (Test)

I p(TB = yes) = 0.001 (for subjects who get tested)

I p(Test = yes|TB = yes) = 0.95
I p(Test = no|TB = no) = 0.95
I Person gets a positive test result. What is
p(TB = yes|Test = yes)?

p(TB = yes|Test = yes) =
p(Test = yes|TB = yes)p(TB = yes)

p(Test = yes)

=
0.95× 0.001

0.95× 0.001 + 0.05× 0.999
' 0.0187

NB: These are fictitious numbers
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Independence

I Let X and Y be two disjoint groups of variables. Then X is said to
be independent of Y if and only if

p(X|Y) = p(X)

for all possible values x and y of X and Y; otherwise X is said to
be dependent on Y

I Using the definition of conditional probability, we get an equivalent
expression for the independence condition

p(X,Y) = p(X)p(Y)

I X independent of Y ⇔ Y independent of X

I Independence of a set of variables. X1, . . . . , XD are independent iff

p(X1, . . . , XD) =
D∏

i=1

p(Xi)
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Conditional Independence

I Let X, Y and Z be three disjoint groups of variables. X is
said to be conditionally independent of Y given Z iff

p(x|y, z) = p(x|z)

for all possible values of x, y and z.

I Equivalently p(x,y|z) = p(x|z)p(y|z) [show this]

I Notation, I(X,Y|Z)
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Bernoulli Distribution

I X is a random variable that either
takes the value 0 or the value 1.

I Let p(X = 1|p) = p and so
p(X = 0|p) = 1− p.

I Then X has a Bernoulli distribution.
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Categorical Distribution

I X is a random variable that takes one
of the values 1, 2, . . . , D.

I Let p(X = i|p) = pi, with∑D
i=1 pi = 1.

I Then X has a catgorical (aka
multinoulli) distribution (see Murphy
2012, p. 35))
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Binomial Distribution

I The binomial distribution is obtained
from the total number of 1’s in n
independent Bernoulli trials.

I X is a random variable that takes one
of the values 0, 1, 2, . . . , n.

I Let p(X = r|p) =
(
n

r

)
pr(1− p)(n−r).

I Then X is binomially distributed.
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Multinomial Distribution

I The multinomial distribution is obtained from the total count
for each outcome in n independent multivariate trials with D
possible outcomes.

I X is a random vector of length D taking values x with
xi ∈ Z+ (non-negative integers) and

∑D
i=1 xi = n.

I Let

p(X = x|p) =
n!

x1! . . . xD!
px1
1 . . . pxD

m

I Then X is multinomially distributed.

19 / 31

Poisson Distribution

I The Poisson distribution is obtained
from binomial distribution in the limit
n→∞ with p/n = λ.

I X is a random variable taking
non-negative integer values 0, 1, 2, . . ..

I Let

p(X = x|λ) =
λx exp(−λ)

x!

I Then X is Poisson distributed.
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Uniform Distribution

I X is a random variable taking values
x ∈ [a, b].

I Let p(X = x) = 1/[b− a]
I Then X is uniformly distributed.

Note

Cannot have a uniform distribution on an
unbounded region.
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Gaussian Distribution

I X is a random variable taking values
x ∈ R (real values).

I Let p(X = x|µ, σ2) =

1√
2πσ2

exp
(
−(x− µ)2

2σ2

)
I Then X is Gaussian distributed with

mean µ and variance σ2.
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Gamma Distribution

I The Gamma distribution has a rate
parameter β > 0 (or a scale parameter
1/β) and a shape parameter α > 0.

I X is a random variable taking values
x ∈ R+ (non-negative real values).

I Let

p(X = x|α, β) =
1

Γ(α)
xα−1βα exp(−βx)

I Then X is Gamma distributed.

I Note the Gamma function.
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Exponential Distribution

I The exponential distribution is a
Gamma distribution with α = 1.

I The exponential distribution is often
used for arrival times.

I X is a random variable taking values
x ∈ R+ .

I Let p(X = x|λ) = λ exp(−λx)
I Then X is exponentially distributed.
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Laplace Distribution

I The Laplace distribution is obtained
from the difference between two
independent identically exponentially
distributed variables.

I X is a random variable taking values
x ∈ R.

I Let p(X = x|λ) = (λ/2) exp(−λ|x|)
I Then X is Laplace distributed.
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Beta Distribution

I X is a random variable taking values
x ∈ [0, 1].

I Let

p(X = x|a, b) =
Γ(a+ b)
Γ(a)Γ(b)

xa−1(1−x)b−1

I Then X is β(a, b) distributed.
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The Kronecker Delta

I Think of a discrete distribution with all its probability mass on
one value. So p(X = i) = 1 iff (if and only if) i = j.

I We can write this using the Kronecker Delta:

p(X = i) = δij

I δij = 1 iff i = j and is zero otherwise.

27 / 31

The Dirac Delta

I Think of a real valued distribution with all its probability
density on one value.

I There is an infinite density peak at one point (lets call this
point a).

I We can write this using the Dirac delta:

p(X = x) = δ(x− a)

which has the properties δ(x− a) = 0 if x 6= a, δ(x− a) =∞
if x = a,∫ ∞

−∞
dx δ(x− a) = 1 and

∫ ∞
−∞

dx f(x)δ(x− a) = f(a).

I You could think of it as a Gaussian distribution in the limit of
zero variance.
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Other Distributions

I Chi-squared distribution with k degrees of freedom is a
Gamma distribution with β = 1/2 and k = 2/α.

I Dirichlet distribution: will be used on this course.

I Weibull distribution (a generalisation of the exponential)

I Geometric distribution

I Negative binomial distribution.

I Wishart distribution (a distribution over matrices).

I Use Wikipedia and Mathworld. Good summaries for
distributions.
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Things you must never (ever) forget

I Probabilities must be between 0 and 1 (though probability
densities can be greater than 1).

I Distributions must sum (or integrate) to 1.
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Summary

I Joint distributions

I Conditional Probability

I Sum and Product Rules

I Standard Probability distributions

I Reading: Murphy secs 2.1-2.4
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