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What is Machine Learning?

I It’s about finding patterns in data, and using the patterns to
make predictions

I There are lots of problems where
I We’d like to be able to solve them with a computer
I We don’t know how to write a computer program to solve

them
I We can collect examples

I Let’s look at some example problems ...
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Example 1: Categorizing Documents

Input: Text of Document

Label: Politics Sports
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Example 1: Categorizing Documents

I Make a list of sport terms?

I What about this:

I Even this simple task is a bit more complicated.
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Example 2: Handwriting Recognition

true class = 7 true class = 2 true class = 1

true class = 0 true class = 4 true class = 1

true class = 4 true class = 9 true class = 5

true class = 7 true class = 2 true class = 1

true class = 0 true class = 4 true class = 1

true class = 4 true class = 9 true class = 5

Figure credit: Murphy Fig. 1.5

I This is deployed! All cheques and handwritten envelopes are
scanned automatically

I Lots of other computer vision problems raise similar issues
(but are harder to solve)
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Example 3: Find Some Patterns

Input: 10 million images from YouTube videos
Researchers from Stanford and Google (Le et al, ICML 2012)

Output: Find something interesting.

Building high-level features using large-scale unsupervised learning

and minimum activation values, then picked 20 equally
spaced thresholds in between. The reported accuracy
is the best classification accuracy among 20 thresholds.

4.3. Recognition

Surprisingly, the best neuron in the network performs
very well in recognizing faces, despite the fact that no
supervisory signals were given during training. The
best neuron in the network achieves 81.7% accuracy in
detecting faces. There are 13,026 faces in the test set,
so guessing all negative only achieves 64.8%. The best
neuron in a one-layered network only achieves 71% ac-
curacy while best linear filter, selected among 100,000
filters sampled randomly from the training set, only
achieves 74%.

To understand their contribution, we removed the lo-
cal contrast normalization sublayers and trained the
network again. Results show that the accuracy of
best neuron drops to 78.5%. This agrees with pre-
vious study showing the importance of local contrast
normalization (Jarrett et al., 2009).

We visualize histograms of activation values for face
images and random images in Figure 2. It can be seen,
even with exclusively unlabeled data, the neuron learns
to differentiate between faces and random distractors.
Specifically, when we give a face as an input image, the
neuron tends to output value larger than the threshold,
0. In contrast, if we give a random image as an input
image, the neuron tends to output value less than 0.

Figure 2. Histograms of faces (red) vs. no faces (blue).
The test set is subsampled such that the ratio between
faces and no faces is one.

4.4. Visualization

In this section, we will present two visualization tech-
niques to verify if the optimal stimulus of the neuron is
indeed a face. The first method is visualizing the most
responsive stimuli in the test set. Since the test set
is large, this method can reliably detect near optimal
stimuli of the tested neuron. The second approach
is to perform numerical optimization to find the op-
timal stimulus (Berkes & Wiskott, 2005; Erhan et al.,
2009; Le et al., 2010). In particular, we find the norm-
bounded input x which maximizes the output f of the

tested neuron, by solving:

x∗ = arg min
x

f(x; W, H), subject to ||x||2 = 1.

Here, f(x; W, H) is the output of the tested neuron
given learned parameters W, H and input x. In our
experiments, this constraint optimization problem is
solved by projected gradient descent with line search.

These visualization methods have complementary
strengths and weaknesses. For instance, visualizing
the most responsive stimuli may suffer from fitting to
noise. On the other hand, the numerical optimization
approach can be susceptible to local minima. Results,
shown in Figure 3, confirm that the tested neuron in-
deed learns the concept of faces.

Figure 3. Top: Top 48 stimuli of the best neuron from the
test set. Bottom: The optimal stimulus according to nu-
merical constraint optimization.

4.5. Invariance properties

We would like to assess the robustness of the face de-
tector against common object transformations, e.g.,
translation, scaling and out-of-plane rotation. First,
we chose a set of 10 face images and perform distor-
tions to them, e.g., scaling and translating. For out-
of-plane rotation, we used 10 images of faces rotating
in 3D (“out-of-plane”) as the test set. To check the ro-
bustness of the neuron, we plot its averaged response
over the small test set with respect to changes in scale,
3D rotation (Figure 4), and translation (Figure 5).6

6Scaled, translated faces are generated by standard
cubic interpolation. For 3D rotated faces, we used 10 se-

Cats!
Building high-level features using large-scale unsupervised learning

Figure 4. Scale (left) and out-of-plane (3D) rotation (right)
invariance properties of the best feature.

Figure 5. Translational invariance properties of the best
feature. x-axis is in pixels

The results show that the neuron is robust against
complex and difficult-to-hard-wire invariances such as
out-of-plane rotation and scaling.

Control experiments on dataset without faces:
As reported above, the best neuron achieves 81.7% ac-
curacy in classifying faces against random distractors.
What if we remove all images that have faces from the
training set?

We performed the control experiment by running a
face detector in OpenCV and removing those training
images that contain at least one face. The recognition
accuracy of the best neuron dropped to 72.5% which
is as low as simple linear filters reported in section 4.3.

5. Cat and human body detectors

Having achieved a face-sensitive neuron, we would like
to understand if the network is also able to detect other
high-level concepts.

We observed that the most common objects in the
YouTube dataset are body parts and pets and hence
suspected that the network also learns these concepts.

To verify this hypothesis and quantify selectivity prop-
erties of the network with respect to these concepts,
we constructed two datasets, one for classifying hu-
man bodies against random backgrounds and one for
classifying cat faces against other random distractors.

quences of rotated faces from The Sheffield Face Database –
http://www.sheffield.ac.uk/eee/research/iel/research/face.
Different sequences record rotated faces of different indi-
viduals. The dataset only contains rotated faces up to 90
degrees. See Appendix F for a sample sequence.

Figure 6. Visualization of the cat face neuron (left) and
human body neuron (right).

For the ease of interpretation, these datasets have a
positive-to-negative ratio identical to the face dataset.

The cat face images are collected from the dataset de-
scribed in (Zhang et al., 2008). In this dataset, there
are 10,000 positive images and 18,409 negative images
(so that the positive-to-negative ratio is similar to the
case of faces). The negative images are chosen ran-
domly from the ImageNet dataset.

Negative and positive examples in our human body
dataset are subsampled at random from a benchmark
dataset (Keller et al., 2009). In the original dataset,
each example is a pair of stereo black-and-white im-
ages. But for simplicity, we keep only the left images.
In total, like in the case of human faces, we have 13,026
positive and 23,974 negative examples.

We then followed the same experimental protocols as
before. The results, shown in Figure 6, confirm that
the network learns not only the concept of faces but
also the concepts of cat faces and human bodies.

Our high-level detectors also outperform standard
baselines in terms of recognition rates, achieving 74.8%
and 76.7% on cat and human body respectively. In
comparison, best linear filters (sampled from the train-
ing set) only achieve 67.2% and 68.1% respectively.

In Table 1, we summarize all previous numerical re-
sults comparing the best neurons against other base-
lines such as linear filters and random guesses. To un-
derstand the effects of training, we also measure the
performance of best neurons in the same network at
random initialization.

During the development process of our algorithm, we
also tried several other algorithms such as deep autoen-
coders (Hinton & Salakhutdinov, 2006; Bengio et al.,
2007) and K-means (Coates et al., 2011). In our im-
plementation, deep autoencoders are also locally con-
nected and use sigmoidal activation function. For K-
means, we downsample images to 40x40 in order to
lower computational costs.

We also varied the parameters of autoencoders, K-
means and chose them to maximize performances
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And More Applications ...

I Computer vision: Face detection, object recognition, scene
understanding

I Speech processing and generation

I Collaborative filtering: Predict how much I will like a book /
movie

I Computational advertising: Predict whether I will click an ad

I Bioinformatics: Identify which regions of DNA encode proteins

I Scientific Applications: Find galaxies in images, Model cellular
chemical processes

I Robotics: Learn a map of a building as a robot explores it

I Natural language processing: Syntactic parsing, building a
database from text, Web search
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Why Machine Learning?

Exciting area of endeavour

I Data is everywhere, and growing.

I ML combines (some) theoretical foundations with (many)
practical problems

I Ubiquitous in AI problems (computer vision, language
modelling, speech modelling, handwriting recognition)

I Growing demand outside of AI (risk management,
characterising historical artefacts, medical imaging, web
analytics, recommender engines, computer games engines,
financial modelling, geoinformational systems, intelligent
management, operational research, etc. etc. etc.)

I Machine learning skills are in high demand

I Buzzwords: “big data”, “analytics”, “data science”
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Outline

I Different Types of Learning Problems

I The Model and the Algorithm

I Probabilities in Machine Learning

I Feature Vectors

I The need for assumptions/models

I Course Outline
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Different Types of Learning Problems

I Supervised learning
I Classification
I Regression

I Unsupervised Learning
I Clustering
I Discovering latent factors
I many others (see Chapter 1, Murphy)
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Supervised Learning

Given dataset D = {(xi,yi), i = 1, 2, . . . , N}, learn a predictor
that given a new x∗ makes a useful statement about the
associated y∗.

Unsupervised Learning

Given dataset D = {xi, i = 1, 2, . . . , N}, find some interesting
patterns in the data set.

Examples of unsupervised learning methods:

I Clustering

I Dimensionality reduction (will explain this later)

I Association rule learning (won’t explain this; take DME)
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“Principled” Machine Learning

I IAML gives you a toolbag of algorithms

I This course focuses on a principled and probabilistic view of
ML

I What does it means to have principles (in ML)?

By “principles” I mean a theoretical framework that helps you to

I Understand what assumptions a learning algorithm makes

I Understand similarities and differences between algorithms

I Derive custom models and algorithms for a new learning task
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The Model and the Algorithm

I Model encodes understanding about the data. Process of
learning from data. (e.g., a set of probability distributions
p(y|x))

I Algorithm comes from the model, causing us to select a
distribution from the set. Or multiple distributions!

I Different algorithms give different approximations
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Probabilities in Machine Learning

I Consider document classification again. Let x denote the
document, and y the label. y ∈ {“Sports”, “Politics”}

I You write a function f in Java that takes x and returns y

I Suppose I pay you £1000 for every politics article you get
right, and £1M for every sports article you get right.1 How do
you modify f?

I Or to make things more complicated, suppose I also charge
you £10000 for every one you get wrong. Now what do you
do?

I One answer: Don’t write a function. Specify a probability
distribution p(y|x) Then you can make decisions by
maximizing the expected profit

I This situation happens in real life . . .

1Important clarification: I am not actually going to do this
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To choose ads

I Estimate clickthrough
rate

I Look up what
advertisers have bid

I Show ads with high
expected value

If you want to act based
on your predictions, it
helps to know
uncertainty.
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Feature Vectors

We (usually) represent the input as a vector x ∈ RD.
This is called a feature vector.
Each element xi for i ∈ {1 . . . D} is called a feature.
Examples:

Documents

Let (w1, w2, . . . wV ) be a dictionary of English,
e.g, w1 = “aardvark”, w2 = “apple”.

xi the number of times that word wi appears in document (bag of
words representation)

Images

Suppose the image is m×m pixels, black and white.
Let D = m2. Order pixels from 1 to D (e.g. raster scan).
Let xi ∈ {0, 1, . . . 255} be the greyscale value of the pixel i
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The Need for Assumptions/Models

xx
1 2

y=1

y=0

I Two input locations, x1 and x2, binary classification problem

I Suppose we know y(x1) = 1, what does this tell us about
y(x2)?

I With no assumptions it tells us nothing ...

I “A learner that makes no a priori assumptions regarding the
target concept has no rational basis for classifying any unseen
instances” (Mitchell, 1997)
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I Assumptions are sometimes known as inductive bias

I No free lunch theorem (Wolpert, 1996): there is no universally
best model

I All learning algorithms make prior assumptions. Anyone who
tells you otherwise is selling you something.
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Course Outline

I Statistical Fundamentals
I Probability, Data and models, Bayesian methods, maximum

likelihood, exponential family

I Supervised Learning
I Linear and nonlinear regression, logistic regression, neural

networks

I Unsupervised Learning
I Dimensionality reduction, expectation maximization

I Computational Issues in Probability Distributions
I Optimization, Variational inference, Markov chain Monte Carlo

I Advanced Topics (if time)
I Deep learning, Gaussian processes
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What is the Point of Studying this Course?

What should you be able to do after this course?

I Understand why and how it is possible to do machine learning

I Understand how the wide set of machine learning methods fit
into an overall framework

I Know how to use and justify these methods

I Be able to create your own machine learning methods

I Learn to think in terms of probabilistic models
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Summary

I Machine learning is ubiquitous and useful

I Theoretical grounding helps us understand algorithms and
generate new ones.

I No free lunch

I Models not algorithms

I Probabilistic view
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Actions

Attending lectures is no substitute for working through the
material! Lectures will motivate the methods and approaches.
Only by study of the notes and bookwork will the details be clear.
If you do not understand the notes then discuss them with one
another. Ask your tutors.

Reading

These lecture slides. Chapter 1 of Murphy.
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