What is Machine Learning?

- It’s about finding patterns in data, and using the patterns to make predictions
- There are lots of problems where
 - We’d like to be able to solve them with a computer
 - We don’t know how to write a computer program to solve them
 - We can collect examples
- Let’s look at some example problems ...

Example 1: Categorizing Documents

Input: Text of Document

Label: Politics Sports

Example 1: Categorizing Documents

- Make a list of sport terms?
- What about this:
 - Even this simple task is a bit more complicated.

Label: Politics Sports

Example 1: Categorizing Documents

- What about this:
 - Supreme court ruling: Medicaid expansion becomes political football
 - States may opt out of a programme offering health coverage to 16 million of America’s poorest after supreme court ruling

- Even this simple task is a bit more complicated.
Example 2: Handwriting Recognition

- This is deployed! All cheques and handwritten envelopes are scanned automatically
- Lots of other computer vision problems raise similar issues (but are harder to solve)

Example 3: Find Some Patterns

Input: 10 million images from YouTube videos
Researchers from Stanford and Google (Le et al, ICML 2012)

Output: Find something interesting.

And More Applications ...

- Computer vision: Face detection, object recognition, scene understanding
- Speech processing and generation
- Collaborative filtering: Predict how much I will like a book / movie
- Computational advertising: Predict whether I will click an ad
- Bioinformatics: Identify which regions of DNA encode proteins
- Scientific Applications: Find galaxies in images, Model cellular chemical processes
- Robotics: Learn a map of a building as a robot explores it
- Natural language processing: Syntactic parsing, building a database from text, Web search
Why Machine Learning?

Exciting area of endeavour
- Data is everywhere, and growing.
- ML combines (some) theoretical foundations with (many) practical problems
- Ubiquitous in AI problems (computer vision, language modelling, speech modelling, handwriting recognition)
- Growing demand outside of AI (risk management, characterising historical artefacts, medical imaging, web analytics, recommender engines, computer games engines, financial modelling, geoinformational systems, intelligent management, operational research, etc. etc. etc.)
- Machine learning skills are in high demand
- Buzzwords: “big data”, “analytics”, “data science”

Outline
- Different Types of Learning Problems
- The Model and the Algorithm
- Probabilities in Machine Learning
- Feature Vectors
- The need for assumptions/models
- Course Outline

Different Types of Learning Problems

- Supervised learning
 - Classification
 - Regression
- Unsupervised Learning
 - Clustering
 - Discovering latent factors
 - many others (see Chapter 1, Murphy)

Supervised Learning
Given dataset \(\mathcal{D} = \{ (x_i, y_i), i = 1, 2, \ldots, N \} \), learn a predictor that given a new \(x^* \) makes a useful statement about the associated \(y^* \).

Unsupervised Learning
Given dataset \(\mathcal{D} = \{ x_i, i = 1, 2, \ldots, N \} \), find some interesting patterns in the data set.

Examples of unsupervised learning methods:
- Clustering
- Dimensionality reduction (will explain this later)
- Association rule learning (won’t explain this; take DME)
“Principled” Machine Learning

▶ IAML gives you a toolbag of algorithms
▶ This course focuses on a principled and probabilistic view of ML
▶ What does it mean to have principles (in ML)?
By “principles” I mean a theoretical framework that helps you to
▶ Understand what assumptions a learning algorithm makes
▶ Understand similarities and differences between algorithms
▶ Derive custom models and algorithms for a new learning task

The Model and the Algorithm

▶ Model encodes understanding about the data. Process of learning from data. (e.g., a set of probability distributions \(p(y|x) \))
▶ Algorithm comes from the model, causing us to select a distribution from the set. Or multiple distributions!
▶ Different algorithms give different approximations

Probabilities in Machine Learning

▶ Consider document classification again. Let \(x \) denote the document, and \(y \) the label. \(y \in \{ \text{“Sports”, “Politics”} \} \)
▶ You write a function \(f \) in Java that takes \(x \) and returns \(y \)
▶ Suppose I pay you £1000 for every politics article you get right, and £1M for every sports article you get right.\(^1\) How do you modify \(f \)?

▶ Or to make things more complicated, suppose I also charge you £10000 for every one you get wrong. Now what do you do?
▶ One answer: Don’t write a function. Specify a probability distribution \(p(y|x) \) Then you can make decisions by maximizing the expected profit
▶ This situation happens in real life . . .

Probabilities in Machine Learning

▶ Consider document classification again. Let \(x \) denote the document, and \(y \) the label. \(y \in \{ \text{“Sports”, “Politics”} \} \)
▶ You write a function \(f \) in Java that takes \(x \) and returns \(y \)
▶ Suppose I pay you £1000 for every politics article you get right, and £1M for every sports article you get right.\(^1\) How do you modify \(f \)?
▶ Or to make things more complicated, suppose I also charge you £10000 for every one you get wrong. Now what do you do?
▶ One answer: Don’t write a function. Specify a probability distribution \(p(y|x) \) Then you can make decisions by maximizing the expected profit
▶ This situation happens in real life . . .

\(^{1}\)Important clarification: I am not actually going to do this
To choose ads
▶ Estimate clickthrough rate
▶ Look up what advertisers have bid
▶ Show ads with high expected value

If you want to act based on your predictions, it helps to know uncertainty.

Feature Vectors

We (usually) represent the input as a vector \(x \in \mathbb{R}^D \).
This is called a feature vector.
Each element \(x_i \) for \(i \in \{1 \ldots D\} \) is called a feature.

Examples:

Documents

Let \((w_1, w_2, \ldots w_V)\) be a dictionary of English,
e.g., \(w_1 = \) “aardvark”, \(w_2 = \) “apple”.
\(x_i \) the number of times that word \(w_i \) appears in document (bag of words representation)

Images

Suppose the image is \(m \times m \) pixels, black and white.
Let \(D = m^2 \). Order pixels from 1 to \(D \) (e.g. raster scan).
Let \(x_i \in \{0,1,\ldots 255\} \) be the greyscale value of the pixel \(i \)

The Need for Assumptions/Models

\[y=1 \]
\[y=0 \]
\[x_1 \]
\[x_2 \]

▶ Two input locations, \(x_1 \) and \(x_2 \), binary classification problem
▶ Suppose we know \(y(x_1) = 1 \), what does this tell us about \(y(x_2) \)?
▶ With no assumptions it tells us nothing ...
▶ “A learner that makes no a priori assumptions regarding the target concept has no rational basis for classifying any unseen instances” (Mitchell, 1997)

▶ Assumptions are sometimes known as inductive bias
▶ No free lunch theorem (Wolpert, 1996): there is no universally best model
▶ All learning algorithms make prior assumptions. Anyone who tells you otherwise is selling you something.
Course Outline

▶ Statistical Fundamentals
 ▶ Probability, Data and models, Bayesian methods, maximum likelihood, exponential family
▶ Supervised Learning
 ▶ Linear and nonlinear regression, logistic regression, neural networks
▶ Unsupervised Learning
 ▶ Dimensionality reduction, expectation maximization
▶ Computational Issues in Probability Distributions
 ▶ Optimization, Variational inference, Markov chain Monte Carlo
▶ Advanced Topics (if time)
 ▶ Deep learning, Gaussian processes

What is the Point of Studying this Course?

What should you be able to do after this course?
▶ Understand why and how it is possible to do machine learning
▶ Understand how the wide set of machine learning methods fit into an overall framework
▶ Know how to use and justify these methods
▶ Be able to create your own machine learning methods
▶ Learn to think in terms of probabilistic models

Summary

▶ Machine learning is ubiquitous and useful
▶ Theoretical grounding helps us understand algorithms and generate new ones.
▶ No free lunch
▶ Models not algorithms
▶ Probabilistic view

Actions

Attending lectures is no substitute for working through the material! Lectures will motivate the methods and approaches. Only by study of the notes and bookwork will the details be clear. If you do not understand the notes then discuss them with one another. Ask your tutors.

Reading
These lecture slides. Chapter 1 of Murphy.