
Machine Learning and Pattern Recognition
Assignment
Instructors: Iain Murray and Chris Williams

Due: 4pm Tuesday 18 November, 2014 [Question 4c updated 2014-11-06]

This assignment is out of 100 marks and forms 20% of your final grade.

Assessed work is subject to University regulations on academic conduct:
http://tinyurl.com/UoEconduct
Do not show your code, answers or write-up to anyone else.
Never copy-and-paste material that’s not your own into your assignment and edit it.
If you use any publicly-available functions that are not provided with the core of Matlab (as
installed on DICE) or in Netlab, you must state where they are from, and explain what they
do in your own words. Using any code from other students taking the class is not acceptable.

Late submissions: The School of Informatics policy is that late coursework normally gets a
mark of zero. See http://tinyurl.com/edinflate for exceptions to this rule. Any requests
for extensions should go to the ITO, either directly or via your Personal Tutor.

Submission instructions: You should submit your answers on paper to the ITO office in
Appleton Tower by the deadline.

Provide relevant code fragments and plots within your answers where appropriate.

1 Regression
In this question we will consider data with a two-dimensional input space x, and a one-
dimensional output y. The data can be found in regqdat.mat as part of the tarball regq.tar.
This file contains a training set with inputs x_trn (num_trn = 200 datapoints) and correspond-
ing outputs y_trn, and also a test set x_tst and y_tst (with num_tst = 200 datapoints).

The data is known to be obtained from the underlying function by adding Gaussian noise of
standard deviation std_n = 0.05.

When you unpack the tarball regq.tar and run the script regq.m in matlab you will get
some data loaded and structures setup which will be useful for answering the questions
below.

1. (Data visualization, 5 marks)
(a) Plot the data in x_trn. Comment on any special aspects of the data distribution.

Also plot the data in Plot the data in x_tst and comment on any differences with
x_trn.

(b) Plot the input-output data in 3-d, and comment on the form of the underlying
function.

Hints: the functions scatter and scatter3 may be useful. Also you can rotate 3-d
plots in 3-d by activating the “Rotate 3D” option under Tools on the matlab figure
window.

2. (Linear regression, 12 marks) Construct the design matrix X of the training data:
num_trn = size(x_trn,1);
X = [ones(num_trn, 1) x_trn];
We will consider a linear regression model of the form f (x) = w0 + w1x1 + w2x2.
(a) Solve for the maximum likelihood parameters ŵ of the model and report their

values.
(b) Calculate and report the mean squared error (MSE) of your model on the training

and testing sets. Also report the MSE of a dumb model f (x) = w0; in this case ŵ0
is just the mean of y_trn.
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(c) Report the estimate for the noise variance obtained from the residuals of the linear
regression model, and compare this with the true noise variance. Comment on any
differences.

3. (Bayesian linear regression, 10 marks) Consider the linear regression model f (x|w) =
w0 + w1x1 + w2x2. We now assume that w ∼ N (0, I3), i.e. it is drawn from a 3-d
multivariate Gaussian distribution with zero mean and the identity covariance matrix.
(a) Consider the input point x∗ = (1, 2)T . Calculate the mean and variance of the

corresponding output f (x∗), treating the weights as random variables.
(b) Draw three random weight vectors from N (0, I3). Provide surface plots f (x|w)

corresponding to each weight vector, and comment on the form of the prior over
functions for the linear regression model.
Hints: Use randn to generate pseudo-random Gaussian random variables. Use
meshgrid to generate a rectangular grid of (x, y) values, and surf to make a
surface plot.

4. (RBF regression, 23 marks). We will now use a mapping from 2-d into 25 dimensions
via a set of Gaussian radial basis functions (RBFs) on a 5× 5 grid.
RBFs are implemented in Prof. Ian Nabney’s Netlab toolbox1. This toolbox is provided
in the tarball regq.tar. See especially the functions rbf and rbffwd. Make sure that
you read through the documentation and online help (e.g. type help rbf at the matlab
prompt) so you know what the various functions do.
The 5× 5 grid of RBFs is set up and visualized using the netlab functions below (this
code is available in the file regq.m):
gridside = 5; % create 5x5 grid of RBFs
rbf_net = create_rbf(gridside);
%
% create grid for plotting
%
[gridx1, gridx2] = meshgrid(-2:.05:2, .5:.05:3.5);
grid_dim = size(gridx1);
grid_phi = eval_rbf_bases(rbf_net, [gridx1(:), gridx2(:)]);
%
% plot the basis functions
%
figure
for ii = 1:gridside^2

surf(gridx1, gridx2, reshape(grid_phi(:,ii), grid_dim));
hold on

end
hold off
First of all the provided function create_rbf is used to set up a RBF network, set its
centres to a grid of locations reasonable for the x-space of the data, and to scale the
width of each RBF to be the mean distance of each centre to its nearest neighbour. You
do not need to adjust these settings.
Then a call to the provided function eval_rbf_bases is made; this evaluates the RBF
basis functions at a M× 2 matrix of data points, where each row is a 2-d point, and
there are M data points.
If you type rbf_net at the matlab prompt after running create_rbf you will get
information about this structure. Do a help rbf at the matlab prompt to learn more
about what these fields mean.
To do Bayesian linear regression with the RBF basis we need to specify a prior on
the hidden-to-output weights of the RBF network (assuming that the RBF centres
and widths are fixed). These parameters are called rbf_net.w2 for the RBFs, and
rbf_net.b2 for the bias weight (corresponding to w0 for linear regression). In netlab,
the weight prior is assumed to have the form N (0, α−1 I), with the field rbf_net.alpha
corresponding to α.

1. http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/
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Recall that for Bayesian linear regression with a basis2 φ(x), we have that

y(x) = wTφ(x) + noise

where the noise is iid for each datapoint, with distribution N (0, σ2
η). With a Gaussian

N (0, α−1 I) prior on the weights, the posterior is given by:

p(w|Φ, y, σ2
η) = N (w|wN , VN)

wN =
1
σ2

η
VNΦTy,

VN = σ2
η(ασ2

η I + ΦTΦ)−1,

where Φ is the design matrix. Also the predictive distribution at a test point x∗ is given
by

p(y∗|x∗,D) ∼ N (wT
Nφ∗, (φ∗)TVNφ∗ + σ2

η),

where φ∗ is the vector of basis functions evaluated at x∗.
We assume the rbf_net.w2 and rbf_net.b2 parameters are drawn from a N (0, I26)
distribution, corresponding to setting rbf_net.alpha to 1 (as set in the create_rbf
function). (This is equivalent to setting the α parameter in the weight prior described
above to 1.)
(a) Draw three random parameter vectors from N (0, I26). Plot the corresponding

regression surface for each set of parameters. Comment on the form of the prior
over functions obtained for this RBF network, and say if you think looks reasonable
for the data you have been given.

(b) We are using a weight prior N (0, α−1 I) with α = 1. What effect would increasing
α have on the form of the functions drawn?

(c) Obtain the maximum a posteriori (MAP) value of the parameters, as shown below
(this code is also available in the script regq.m)
D = gridside^2 + 1; % number of parameters (incl const term)
trn_phi = eval_rbf_bases(rbf_net, x_trn);
trn_Phi = [ones(num_trn, 1) trn_phi]; % design matrix
w_rbf_map = (trn_Phi’*trn_Phi + rbf_net.alpha*std_n^2*eye(D))\trn_Phi’*y_trn;
rbf_net.w2 = w_rbf_map(2:end); % store values back to model
rbf_net.b2 = w_rbf_map(1);
Calculate and report the mean squared error (MSE) of your model on the training
and testing sets using the MAP parameters.

(d) Calculate and report the mean squared error (MSE) of your model on the training
and testing sets using the maximum likelihood parameters (which can be obtained
by a simple modification of the code above). Comment on any differences of these
errors with the MAP values, and also make a comparison with the linear regression
results.

(e) Report the maximum likelihood estimate for the noise variance obtained from
the residuals, and compare this with the true noise variance. Comment on any
differences.

(f) It is particularly interesting to look at the predictive variance of the RBF model.
Make a plot of the predictive variance in the domain x1 = [−4, 4] and x2 = [−1, 5],
and comment on the structure you see.

The second part of the assignment starts on the next page. . .

2. In the equations below the bias weight is included along with all of the others in the basis.
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2 Game prediction/ranking and logistic regression
In this part you’ll model data from the KGS Go server, http://www.gokgs.com/, an online
service where millions of two-player games are played every year between hundreds of
thousands of users. The service models and reports the ability of each player. Most players
choose to play with those of similar ability, so most games are closely-matched. It is hard to
beat the baseline prediction that the probabilities of each user winning any game is a half.

The data: A small subset of data has been selected, biased towards games with new users.
These games were not all evenly matched, while the system and players worked out how
good they were relative to everyone else. In the real system, adapting to new users quickly
is important, so performing well on subsets like this one is important.

Training data train_games.txt has N=319 rows, with three columns: 1) p1, ID of player 1;
2) p2, ID of player 2; 3) y, did player 1 win (as 1 or 0)? The data has been pre-processed
to make the player ID’s of the D different players take on integers from 1 . . . D. Test data,
test_games.txt is in the same format, with M=115 rows.

In the game, player one plays with white pieces and player two plays with black pieces. It’s
not necessarily obvious how this knowledge would change predictions. Black plays first,
but the scoring system is meant to compensate for this advantage. (Some of you may know
that the game of Go has a handicap system, which can give a further advantage to the black
player. Handicapped games have been omitted from the data provided however.)

Predicting game outcomes as classification: Given a setting of players one and two, (p1, p2),
predicting whether p1 won the game (y=1) or not (y=0) is a classification task. We could
consider passing the (p(n)1 , p(n)2 , y(n)) training tuples to any classification model, and using
the model to predict future outcomes. The fitted parameters within the classifier might (or
might not!) have an interesting interpretation that tells us something about the players.

Naive Bayes is a simple classifier. Given input features p=(p1, p2) and a binary ‘class label’
y indicating whether p1 won, we can write down a joint model of a row of data as follows:

P(y, p1, p2) = P(y) P(p1 | y) P(p2 | y). (1)

To generate data for a new game, the model first decides whether the first player p1 won
the game (without knowing who that player is). After generating y, the model then chooses
the identities of the two players independently. Specifying the model requires probabilities
such as P(p2=65 | y=0): “given that p1 lost, but not the identity of that player, what’s the
probability that p2 was player 65?”

We can estimate all of the required probabilities from the training data:

P̂(y) =
ny + α

N + 2α
, P̂(pi | y) =

ny,i,pi + α

ny + αD
,

where in the N training items, ny is the number of times the third column is set to y, and
ny,i,pi is the number of times column i is set to pi when the third column is y. The counts
are smoothed, preventing estimates of zero, with a positive constant α. The conditional
distributions are likely to be uneven so we picked a fairly small, ‘responsive’ value of α=0.1.
We know that P(y=1) is likely to be close to a half, so we could have picked a larger α to
estimate the class probabilities. However, there is a lot of data for that estimate, so choosing
α is unlikely to be as important.

1. The Zermelo/Bradley–Terry model (10 marks)

(a) Game prediction as Logistic regression: Zermelo (1929) proposed a model where
the probability of player p1 winning a game against player p2 is given by:

P(p1 beats p2) =
up1

up1 + up2

, (2)

where up1 and up2 give the underlying, positive-valued abilities of the two players.
An equivalent model has been rediscovered several times; Bradley and Terry (1952)
wrote the most cited paper on this model.
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We can reparameterize the positive-valued ability of player d as an unconstrained
parameter, wd, by setting ud = exp(wd). The parameters for all D players being
modelled can be put into a single D×1 vector, w.

Show that the model in (2) can be written as a logistic regression model:

P(y=1 | x) = 1
1 + exp(−w>x)

, (3)

where y=1 if player p1 beats player p2, and x is a feature vector encoding that players
p1 and p2 were playing, and that y should indicate whether p1 won. Your explanation
should include a description of how to construct the feature vector x from (p1, p2).

(b) Comparing and contrasting the approaches:

Why do the models discussed so far, based on Naive Bayes and logistic regression, use
different input feature representations, p=(p1, p2) and x? Discuss whether it might
work to run logistic regression with two inputs p=(p1, p2) and/or Naive Bayes with
feature vector x.

Show that the logistic regression model treats p1 and p2 symmetrically. That is, the
probability of winning a game against a particular player doesn’t depend on whether
you are ‘player one’ (white) or ‘player two’ (black) in the pairing. How could the model
be modified so that it could model an advantage/disadvantage in being player p1
(white)?

Give any advantages of disadvantages that you see of each of the two approaches over
the other. In particular, explain whether one of the models is more prone to players
‘gaming the system’. That is, if player A repeatedly plays and wins against a very
weak player, is one of the classifiers more prone than the other to predict that player
A will win all of their future games, regardless of their opponent?

2. Fitting and testing the models (40 marks)

(a) Naive Bayes: The Matlab function game_naive_bayes_demo.m fits the naive Bayes
model to the training set as described above, and returns probabilistic predictions
of whether p1 wins in each game in the test set. That is, it returns a vector of M
probabilities, p(y(m)=1 | p(m)

1 , p(m)
2 ) for each row m in the test set.

Obtain the probabilistic predictions by running the code, and create hard predictions,
by thresholding the probabilities at 0.5. Report the classifier’s accuracy: the fraction
of test games correctly predicted. Also report the mean log probability of the true test
y labels under the model’s predictive probabilities.

A good answer will report standard errors on these test scores, which are noisy
estimates of the scores that would be obtained if we had access to an infinite test set.

Does the model perform better than the simplest baseline: predicting P(y=1 | p) = 0.5,
regardless of who is playing?

(b) Logistic regression: The Matlab function game_loglike.m evaluates the log-likelihood
of the logistic regression model (3), and its partial derivatives with respect to the
weights w. As its documentation states, this function takes the original features p
directly, rather than requiring you to convert them into the feature vector x discussed
in question 1a.

Use the provided generic gradient-based optimization routine, minimize.m by Carl
Rasmussen. Maximize the likelihood, by writing a negative_loglike.m function and
minimizing it. If you wish, you may use another minimizer instead, for example one
that comes with Netlab.

Numerical problems in the provided code mean that the optimizer doesn’t actually
find parameters that completely maximize the log-likelihood. Explain a way to change
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the numerically fitted weights that would make the true log-likelihood slightly higher.
(Hint: consider the weight for a player who won all their training games.)

Use the parameters fitted by the minimize routine to create a vector of test predictions
p(y(m)=1 | p(m)

1 , p(m)
2 ), under the logistic regression (Zermelo/Bradley–Terry) model.

How does the model’s accuracy and mean log probability compare to Naive Bayes
on the test set? Also make both models ‘predict’ the labels on the training set, and
compare their performances on that set. Briefly comment on what these results
illustrate.

(c) Regularization: We can limit the size of the weights w by adding λw>w to the
negative log-likelihood.

What predictions result from the weights fitted with this regularization in the extreme
limits where λ is very small and very large?

Create a function to compute this penalized negative log-likelihood and its gradients.
You should check that your gradients are consistent with finite differences of the
function values. You may wish to use the provided checkgrad.m by Carl Rasmussen,
as used in game_loglike_check.m to check the log-likelihood routine. Alternatively
you could use Netlab’s gradchek routine.

We have determined (so that you don’t have to) that λ = 0.5 is a reasonable value.
We used 20-fold cross-validation1 on the training set. Fit the regularized model with
this setting, λ=0.5. How does applying this regularization perform on the test set
compared to the maximum likelihood fit?

3. Entirely optional: Hierarchical logistic regression and MCMC (0 marks)

We will provide an answer to this question, and feedback on any attempts. However, you won’t
gain any extra credit for it: there is no penalty for not submitting an answer to this part.

A hierarchical model says that the weights are Gaussian distributed, but with unknown variance:

P(log λ) = Uniform[log λ; a, b]

P(w) = N
(
w; 0, 1

2λ I
)
=

(
λ
π

)D/2
exp(−λw>w),

with P(y = 1 |w, x) as in Equation (3). While not strictly well defined, it’s common to take the
‘improper’ limit, a→ −∞ and b→ ∞. This limit prefers no single value of log λ over another, and
does not restrict its range. (Almost all of the prior mass is on extreme values, which may or may
not matter in practice.)

The log-posterior of this model, up to a constant, is the log-likelihood L(w), plus a term for the log
prior:

log P(w, log λ |data) = L(w)− λw>w + D
2 log λ + const. (4)

(a) What is the largest log-likelihood that any model can have given a training set of N binary
outcomes? What is the log-likelihood of zero weights, w = 0? Hence show that the log-posterior
above is globally maximized by setting the weights to zero and making λ infinite. (Hence the
need for cross validation above when setting λ. We could restrict the prior range log λ ∈ [a, b],
but then how would we set that?)

(b) Use the provided slice_sample.m Markov chain Monte Carlo routine to approximately sample
from the hierarchical posterior in (4) for 1,000 iterations. Report any choices that you needed to
make. Plot λ against iteration number. Does the sampler seem to have reached steady-state
behaviour? Does the value of λ found by cross-validation seem reasonable?

Hint: in your code, put w and log λ into a single vector theta, and write a function to evaluate
the log posterior (up to a constant) of this vector. Give the slice sampling routine a function
handle to this routine.

1. See the model selection lecture and references. We will provide example code with the assignment solutions.
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(c) Explain how to use the samples of w to predict the game outcomes on the test set. Compare
the result of sampling to the fitted regularized model.

(d) Explain how to use the samples to find the probability that player 1 is better than player 2, that
is P(w1 > w2). Can any of the fitted classifiers answer this question?

Reminder: all of part 3 above, on the hierarchical model and MCMC (in small
type) is entirely optional and carries no credit.

3 Notes on MATLAB
• Remember, there are only a limited number of licences for MATLAB. After you

have finished using MATLAB, quit from the MATLAB session so that others can
work.
• Under the Resources heading on the PMR page http://www.inf.ed.ac.uk/teaching/
courses/pmr/ there are a number of MATLAB tutorials listed.

• You can find out more about most MATLAB functions by typing help followed by the
function name. Also, you can find the .m file corresponding to a given function using
the which command.

• close all closes all the figures. It helps if things get cluttered.
• Read about plots in the “Introduction to MATLAB” linked from the PMR home-

page. Recall that the current figure can be saved as a PDF file myplot.pdf using
print -dpdf myplot.pdf.
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