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Abstract

Robot locomotion is a complex task because of
non-linear dynamics and uncertainty in sensory
information. Deep reinforcement learning is a
good match for this problem, as neural networks
have the ability to model complex non-linear
functions, and reinforcement learning is designed
to deal with uncertainty. Recently proposed al-
gorithms for continuous control using deep re-
inforcement learning utilize fully connected net-
works that do not take advantage of the struc-
turally equivalent components in robots, such as
arms or legs. This work proposes a neural net-
work architecture that incorporates locally con-
nected sub-networks for structural components
and shared weights for equal parts. Utilizing the
Mujoco robot simulation environments, the two
more complex robots out of the 4 investigated
showed noticeable improvements in maximum
attainable reward when utilizing our proposed
architecture over the baseline.

1. Introduction
There is a strong desire to create autonomous robotic sys-
tems that can make their own decisions without a depen-
dence on pre-engineered features or having human over-
sight. However, this is incredibly hard to achieve as most
robot systems have non-linear dynamics that are difficult to
model explicitly, in addition to having uncertainty in sen-
sory information. Thus, there is a need for algorithms that
can work without exact models of the system, in addition
to being robust to uncertainty.

Deep reinforcement learning offers a potential solution to
this problem, with promising performance in difficult tasks
such as playing Atari Video games successfully (LeCun
et al., 2015; Mnih et al., 2015). This ability to learn to solve
complex tasks given only a reward signal and information
about the environment can be applied to robotic locomotion
via the use of robotic simulation. Recent algorithms for con-
tinuous control (for applications such as controlling robot
joint torques) are based upon the policy gradient method
(Lillicrap et al., 2015), utilizing deep neural networks as
function approximators. Whilst they can be successful, they
are not particularly sample efficient, meaning they require
many trials to learn desirable behaviour. This would not
be feasible for an expensive, real world robot, so simulated
environments are invaluable.

This report presents an approach to designing the archi-
tectures of policy networks to take advantage of robots
having structurally equivalent parts. Recent approaches
learn different weights for all actions that control the joints.
Conversely, our proposed design utilizes locally connected
sub-networks with shared weights for low-level control
of structurally equivalent parts. The simulated humanoid
robot for example, seen in Figure 1d, in our shared-weight
architecture learns one sub-network and another one for the
arms. For execution, the architecture uses two copies of
these networks for both legs and arms respectively, with
the higher layers sending the sub-networks different inputs.
This proposed architecture is investigated with the aim of
identifying whether it can speed up training and/or improve
the overall performance.

In the next section, we introduce the used reinforcement
learning setting that we employed to test our neural network
architectures and the deep deterministic policy gradient
(DDPG) method that was used to train the networks. Fur-
thermore, we describe different additions that are necessary
for a successful training of the networks. In Section 3 we
describe the reinforcement learning environment which is
based on the Mujoco (Todorov et al., 2012) physics engine
and introduce the robot-like agents that we used in our ex-
periments. After that we propose the weight sharing policy
network architecture that makes use of structurally equiva-
lent parts. Our experiments are presented in Section 5. We
show that our approach outperforms the baseline for envi-
ronments with a lot of equivalent parts. Then, we compare
our approach to related work and finally conclude our work
in the last section and give directions for future work.

2. Methodology
The reinforcement learning setup that is used in this work is
defined as follows: an agent interacts with an environment
E in discrete timesteps. For each timestep the agent receives
an observation xt, takes an action at and receives a scalar
reward rt. The observations are sensory measurements of
the robot’s state such as joint angles and positions. The
environment is modeled as a Markov decision process with
state space S, real valued action space A = RN and an
initial state distribution p(s1). The transition probabilities
are given by p(st+1|st, at), which defines the probability of
entering state st+1 after beeing in state st and taking an
action at. The reward is also a function of the chosen action
and current state r(st, at).

The agents that control the robots selects its action with a
deterministic policy that maps states to actions π : S →
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A, meaning that a policy π selects an action to take upon
observation of a state st. The expected return from a state
is given by Rt =

∑T
i=t γ

i−tr(si, ai), which is a sum of future
rewards discounted by a discounting factor γ ∈ [0, 1]. The
discount factor determines the importance of future reward
over longer term ones, i.e. as closer it is to 1 the longer
is the time horizon. The action-value function describes
the expected return after taking an action at in state st after
which the policy π is followed:

Qπ(st, at) = Eri≥t ,si≥t∼E,ai>t∼π[Rt |st, at] (1)

The action-value function can be recursively computed
using the Bellman-Equation (Sutton & Barto, 1998), which
is defined as follows if the policy is deterministic:

Qπ(st, at) = Ert ,st+1 [r(st, at) + γQπ(st+1, π(st+1))] (2)

It is possible to use function approximators to learn the
action-value function. A function approximator parameter-
ized by θQ can be optimized by minimizing the following
loss:

L(θQ) = Est∼ρβ,at∼β,rt∼E

[
(Q(st, at |θ

Q) − yt)2
]

(3)

with ρπ being the state visitation distribution for a policy π,
and yt given by

yt = r(st, at) + γQ(st+1, µ(st+1)|θQ) (4)

In general, this is referred to as Q-learning (Watkins &
Dayan, 1992) when the greedy policy is used.

2.1. Deep Deterministic Policy Gradient

The overall goal in reinforcement learning is to find a policy
in which the expected return is maximized, starting in a
state drawn from the starting distribution. The idea of policy
gradient methods is to optimize a parameterized policy
π(a|θ) directly by maximizing the expected return from
the start distribution J = Eri,si∼E,ai∼π[R1]. The advantage
of learning the policy directly is that this enables infinite
observation and action spaces which is intractable when
using a greedy policy µ(s) = arg maxa Q(s, a) based on a
learned action-value function.

To obtain the policy updates we get the gradient of the
expected return with respect to the parameters of the policy
by applying the chain rule as follows:

∇θπ J ≈ Est∼ρβ [∇θπQ(s, a|θQ)|s=st ,a=π(st |θπ)]

= Est∼ρβ [∇aQ(s, a|θQ)|s=st ,a=π(st)∇θππ(s|θπ)|s=st ]
(5)

where Q(s, a|θQ) is a parameterized action-value function
and ρβ is the state visitation distribution of another policy β,
which means that it is possible to learn θπ off-policy using β.
It has been proven by Silver et al. (2014) that this gradient
is the policy gradient, which is the gradient of the policy’s
performance.

The method of optimizing a policy based on the gradient
update shown above is called deterministic policy gradi-
ent (Silver et al., 2014). This method was extended by

Lillicrap et al. (2015) to use deep neural networks for the
policy and the action-value function, which they called
deep deterministic policy gradient (DDPG). The actor net-
work which resembles the policy is learned with stochastic
gradient ascent on the gradient defined in equation 5. The
critic network which approximates the action-value func-
tion Q(s, a|θQ) is trained by minimizing the loss given in
equation 3.

One requirement to train neural networks successfully is
that the training examples are are independently and iden-
tically distributed, which is not the case when the environ-
ment is explored sequentially. This is tackled by the use of
a replay buffer, as introduced by Mnih et al. (2015). The
replay buffer is a finite sized cache R which stores tuples of
previously explored transitions (st, at, rt, st+1). When there
are enough transitions in the replay buffer, makes is very
likely that sampled transitions are uncorrelated.

Implementing Q-learning with neural networks based on
equation 3 can be particularly unstable as the network
Q(s, a|θQ) that is being updated is also used in calculat-
ing the target value yt given in equation 4. The solution
proposed by Lillicrap et al. (2015) is to use a separate target
network and update its weights gradually. This is done
by making a copy of both the actor and critic networks,
µ′(s|θµ

′

) and Q′(s, a|θQ′) respectively. These are gradually
updated with θ′ ← τθ + (1 − τ)θ′, where τ � 1. This
constrains the target networks to change slowly, inducing
greater stability of learning.

2.2. Parameter Noise

As mentioned in coursework 3, the reinforcement learning
algorithm requires some exploratory behaviour in order to
learn more about its environment. The method that was
proposed in CW3 was through a noise injection N into the
action space of the actor policy µ, like so:

µ′(st) = µ(st |θ
µ
t ) +N (6)

The noise is temporally correlated for an efficient explo-
ration in systems with inertia, which corresponds to using
an Ornstein-Uhlenbeck process to generate N . However, it
is proposed by Plappert et al. (2017) that adding noise di-
rectly to the agent’s parameters can lead to “more consistent
exploration and a richer set of behaviours”.

This structured exploration through parameter noise is
achieved by applying additive Gaussian noise to the pa-
rameter vector of the current actor policy:

θ̃µ = θµ +N(0, σ2I) (7)

The resulting perturbed policy is referred to as π̃, and this
policy is kept for a whole rollout (simulation run that is
ended by time-limit or failure condition, also referred to
as an episode). However, as mentioned by Plappert et al.
(2017), it is not obvious that simply adding spherical Gaus-
sian noise to the parameters of a deep neural network with
potentially millions of parameters and complicated non-
linear interactions will result in meaningful perturbations
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in the outputs. However, it was shown by Salimans et al.
(2017) that one can reparameterize a network to achieve
this very thing. This was implemented by utilizing layer
normalization, introduced by Ba et al. (2016). Similar to
batch normalization, it normalizes across activations within
a layer, meaning the same perturbation scale σ2 can be used
across all layers and parameters.

The layer normalization statistics over H hidden units in
the same layer l are calculated as follows, with µl the layer
mean and σl the layer variance

µl =
1
H

H∑
i=1

al
i σl =

√√√
1
H

H∑
i=1

(al
i − µ

l)2) (8)

These statistics are used to fix the mean and variance of the
summed inputs within each layer.

However, parameter noise introduces another issue as to
the selection of the noise scale σ. As the noise is being
added directly to the parameters of the neural network, this
means the perturbation of the output, even with the same
σ, will be massively dependent on the specific network
architecture. In addition, this scale will likely change over
time as learning progresses and parameters become more
sensitive to noise. This issue is solved by adapting the scale
of the parameter noise over time by comparing it to the
variance in the action space that it induces. For every K
timesteps, σk is updated like so:

σk+1 =

ασk if d(π, π̃) < δ
1
α
σk otherwise

(9)

In this equation, a distance measure d(π, π̃) is utilized to
determine the difference (in action space) between the per-
turbed and unperturbed policies. With a typical value of
α = 1.01, if this distance is too large, then the noise scale
σk+1 is rescaled to be smaller, and increased if the oppo-
site is true. This method means that the magnitude of the
exploration in action space is never too large or too small.

For DDPG, the distance measure d(π, π̃) is given by the
following equation:

d(π, π̃) =

√√√
1
N

N∑
i=1

Es
[
(π(s)i − π̃(s)i)2] (10)

where Es[·] is estimated from a batch of states in the replay
buffer (batch size 32). N is the dimension of the action
space (the number of outputs of the actor network). In
equation 9, δ = σ = 0.1 . From this, it is clear to see
how the adaptive parameter noise keeps the effective action
space noise equivalent (or at least near) to some action
noise with the same standard deviation δ = σ.

3. Mujoco Environment
The motivation for our proposal of weight sharing in deep
reinforcement learning for continuous control is to make the
training in robotic environments more efficient by utilizing

structurally equivalent parts. Since it is not feasible for us
to make experiments with real world robots, we rely on
physical simulations of robot-like agents. These allow us
evaluate and compare different approaches, while being an
approximation of the real task.

In coursework 3, we used the Roboschool environment,
which contains various simulated robots such as a two di-
mensional walker, cheetah and a humanoid. But we found
that due to the reward structure in Roboschool it seems
to be very hard to train. After trying many different net-
work architectures and hyperparameters for DDPG, we did
not manage to train any of the agents to move forward at
all. Roboschool is a replacement for the Mujoco physics
engine (Todorov et al., 2012) (the motivation for the re-
placement is that Mujoco requires a licence to be used).
However, most recent publication still rely on Mujoco in-
stead of Roboschool (Tassa et al., 2018; Song & Wu, 2018),
hence we decided to switch to Mujoco. Mujoco contains
the same agents, but the physics simulation is different and
the reward functions are not the same. With Mujoco we
were able to train agents that move and eventually agents
that achieve a very good performance.

Mujoco is a physics engine which is specialized on model-
based control. It is able to efficiently simulate robot like
agents with multi-joint dynamics and contact responses
(Todorov et al., 2012). For our experiments we use four
environments of Open AI Gym (Brockman et al., 2016)
that are powered by Mujoco and have been introduced
as reinforcement learning benchmark tasks by Duan et al.
(2016): Walker2d, HalfCheetah, Ant and Humanoid (cf.
Figure 1 respectively). In the case of Mujoco environments,
actions are the torques that are applied to the joints of the
agents and observations that consist of: the robot’s position
and velocity as well as its joint positions and joint angle
velocities. The ant and humanoid environment include
contact information of body parts with the floor.

The task in each of these environments is to learn a policy
that makes the agent move forward as fast as possible while
applying torques that are as small as possible. The simu-
lation is episodic and is run for a maximum of 5000 steps.
All but the cheetah environment have a stop condition if the
upper part of the agent comes to close to the floor. While
the reward functions of the environments differ slightly in
the used penalties, all of them use the the speed of the agent
in x-direction as a reward:

vt =
posafter − posbefore

dt
, (11)

where dt represents of how long the simulation has been
run since the last step and posafter is the x-position after
applying the actions and posbefore before applying them.
In the following we refer to this term with vt. In addition,
all reward functions contain a penalty term for the applied
actions a, which incentivizes the agent to not use too large
torques. On the one hand, this is desirable for real robots
because smaller torques lead to a smaller power consump-
tion and the penalty also avoids unnecessary movements
of the robot. On the other hand, we want to avoid high
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(a) Walker2d-v2 (b) HalfCheetah-v2 (c) Ant-v2 (d) Humanoid-v2

Figure 1. OpenAi Gym environmemts based on the Mujoco physics engine that where used in our experiments.

torques because they may lead to extreme movements that
are not possible in reality or could damage the robot or the
environment.

In the following, we discuss the structure and reward func-
tion of each of the environments that we use in more detail.
For all environments we use the the version v2 in Open AI
Gym.

3.1. Walker2d

The walker environment is a fairly simple agent. It consists
of two controllable legs and a torso stump (cf. Figure 1a)
and can only move along the x-axis of the physical envi-
ronment. The agent has 6 controllable joints, three in each
leg, which can be moved around the y-axis. The difficulty
in this environment is that the agent must not tip over and
does not has an upper torso to balance itself. The reward
function of the walker is defined as follows

rt = vt − 0.001 · ||a||2 + 1, (12)

the last constant term is a survival bonus.

3.2. HalfCheetah

The half cheetah is also only able to move along the x-
axis and has also 6 controllable joints. In contrast, to the
walker the cheetah is not prone to fall over that easily, as it
is naturally in a stable state without changing its position.
The reward function of the cheetah is:

rt = vt − 0.1 · ||a||2. (13)

There is no survival bonus in this environment. We believe
the reason is that the simulation does not end when the
cheetah falls over, so if there would be a survival bonus
it could set a = 0 and would constantly receive a positive
reward, which would lead to unintended behavior.

3.3. Ant

The ant is a 3d robot that can move in any direction and has
8 controllable joints. Each leg has two controllable joints
where one axis can be controlled: the hip joint allows the
leg to tilt around the z-axis and the knee moves the leg up
and down. One difficulty with the ant, compared to walker
and cheetah, is that the agent must not only learn to how

to run but also to run in the right direction. The reward
function is given by:

rt = vt − 0.5 · ||a||2 + costcontact + 1,

with costcontact = 0.5 × 10−3 · ||clip(c,−1, 1)||2,
(14)

the last constant term is again a survival bonus and the
contact cost term penalizes hard impacts on the ground.

3.4. Humanoid

The humanoid is by far the most complex agent. It has
9 controllable joints of which some have three degree of
freedom (DoF), thus allowing the humanoid more complex
movements. There are joints with 1 DoF in each knee and
elbow, the hips are universal joints with 3 DoF, the abdomen
is modeled as one joint with 3 DoF and the both shoulders
have 2 DoF. This makes the control of the humanoid much
more complex compared to the other robots, as it is harder
to coordinate the torques for the different axes of the joints.
The reward function of the humanoid is defined as follows:

rt = 0.25 · vt − 0.1 · ||a||2 + costcontact + 5,

with costcontact = min {0.5 × 10−6 · ||c||2, 10},
(15)

the last term is again a survival bonus and is higher com-
pared to walker and ant. Similarly to the ant, there is a
impact penalty for contacts with the ground.

4. Proposed Network Architectures
In most of the recent work for continuous control with
deep reinforcement learning, the policy networks are fully
connected. That means all outputs depend on the same
hidden representations and every output unit has its own
set of weights. We propose a novel architecture for robot
control that utilizes local connectivity and weight sharing.
Our network architecture is split into two parts: the com-
mander maps the observations into a shared non-linear
representation and produces different inputs for the follow-
ing controllers, which are locally connected subnets that
produce the outputs for a subset of all actions given the
hidden representation produced by the commander. The
weights of the controllers can be shared among different
action subsets.

Figure 2 shows an example architecture for a humanoid
robot. The commander takes the observations as inputs
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Figure 2. Two controllers with shared weights control the left and
right arm of a humanoid robot. An independent third controller is
in charge of its neck.

and can exist of an arbitrary number of fully connected
hidden layers. After these layers, the commands for the
three controllers are produced. While these commands are
different for all controllers, the first two controllers share
the weights of their hidden layers, because the arms of the
humanoid are structurally equivalent. The controllers then
output the actions for the arms and the neck, respectively.

5. Experiments and Results
With respect to obtaining our overall objective of evaluating
whether or not our proposed commander-controller archi-
tecture improves learning, we compared the performance
of different policy network architectures in the four Mu-
joco based OpenAI Gym environments that we described in
Section 3. In the following, we describe the used hyperpa-
rameter settings and specifics of our implementation. Then,
we present and discuss our results.

Experiment Setup While experimenting with Mujoco
and in the previous work of coursework 3 with Roboschool
we found that DDPG is very sensitive to different hyper-
parameter settings. We furthermore observed that base-
line implementations from other papers, e.g. rllab (Duan
et al., 2016), rllabplusplus (Gu et al., 2016) and OpenAI
baselines (Plappert et al., 2017), do not exactly follow the
original DDPG algorithm of Lillicrap et al. (2015). These
issues have been thoroughly investigated by Henderson
et al. (2017), with their findings matching what we have
observed. For example, that “implementation differences
which are often not reflected in publications can have dra-
matic impacts on performance.” (Henderson et al., 2017).

While we have our own fully functional implementation
of DDPG in PyTorch1, we therefore decided to use the
DDPG implementation of OpenAI baselines (Dhariwal

1https://github.com/nicoring/RoboRL

et al., 2017)2, to obtain results that are better compara-
ble with results presented in other work. Furthermore, we
use the following hyperparameter choices that are partly
based on the suggestions of Henderson et al. (2017) for
running tasks in OpenAI’s Mujoco environments:

• discount factor: γ = 0.995

• target update factor: τ = 0.01

• batch size: m = 128

• use reward and observation normalization

• 25 mini-batch Adam (Kingma & Ba, 2014) steps every
50 simulation steps

• relu for hidden layers and tanh for action outputs

• actor learning rate: 1 × 10−4 and critic learning rate
1 × 10−3

• critic L2 regularization 1 × 10−2

Evaluation Method We evaluate the performance of the
different architectures every 1000 simulation steps, by run-
ning the policy without added noise, such that there is no
exploration. The sum of all rewards is then reported as a
evaluation metric. However, the results vary a lot between
runs with different seeds, because the random exploration
has a huge impact on the performance of the robot. In their
experiments Henderson et al. (2017) have shown that using
N < 5 seeds is not sufficient to make statistically signif-
icant conclusions. Furthermore, they state that it can be
misleading if you only report the top-N trials. Therefore,
we decided to run 10 random seeds for each experiment
and average the results over them. In addition, we run each
evaluation 5 times and average their results to get a better
estimate of the performance of the starting distribution.

Network Architectures The baseline policy network for
all environments is a fully connected network with two
hidden layers and 128 hidden units each. After each hidden
layer follows a Layer Normalization layer and a ReLU non-
linearity. Lastly, the output units are restricted to the action
space of (−1, 1) with tanh.

Our naming convention indicates the numbers of layers in
the commander and the controllers respectively. We count
the branching layer that branches out to the controllers as
a part of the commander. This means for example, that
the network architecture Commander-2-Controller-1 has
three layers: one commander hidden layer, one commander
hidden branching layer, no controller hidden layer and one
controller output layer.

For our shared-controller experiments, unless otherwise
stated, we design the numbers, purposes and dimension-
alities of the controllers for every environment as follows.
The walker’s policy networks have a single controller with
64 hidden units, shared among both of the walker’s legs.
Likewise the half cheetah’s policy networks consist of a

2An implementation of our architectures using baselines can
be found here: https://github.com/jejay/baselines

https://github.com/nicoring/RoboRL
https://github.com/jejay/baselines
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Figure 3. Average returns over 10 seeds in four environments for three network architectures. For better presentation reported values
are smoothed with a rolling mean with a window of 50. The lines show the mean performance and the colored areas show the regions
between the 25th and 75th percentile.

single controller with 64 hidden units, shared among both
of the half cheetah’s legs. The ant’s shared policy networks
have a single controller with 32 hidden units and which is
shared among all of its four legs. The humanoid’s shared
policy networks have three distinct controllers. One with
32 hidden units, shared among both knees including the
part of the hip attached to each knee; another controller
with 24 hidden units shared among both arms with attached
shoulders and a third non-shared controller for the abdomen
with 16 hidden units. For all environment’s shared network
architectures the sum of all controller’s hidden layers multi-
plied by the number each controller is shared equals 128,
the hidden dimensionality of the fully connected baseline.
This sum can be pictured as the width among all controllers
when they are laid out as pictured in figure 2. For example
in the case of the humanoid this is 32 · 2 + 24 · 2 + 16 = 128.

5.1. Commander-Controller Networks

We evaluate commander-controller networks that have
fewer free parameters than the fully connected baseline.
The performance of the vanilla baseline, Commander-2-
Controller-1 and Commander-1-Controller-2 architectures
can be seen in Figure 3, evaluated on the four OpenAI gym
Mujoco environments shown in section 3. As indicated
above these results are the average over 10 random seeds
to get an better estimation of the performance. The values
we present here are additionally smoothed with a running
average with a window size of 50, we did this to make it
easier to compare the results, as the performance on all envi-
ronments has a very high variance (especially for Walker2d
and Humanoid). An example of not smoothed results is
shown in Figure 4 for the Walker2d environment.
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Walker2d-v2

Figure 4. Not smoothed results for the Walker2d environment as a
comparison to the smoothed results. The line colors are the same
as in Figure 3.

Walker2d This environment appears to show no dis-
cernible differences in either the overall performance or
the speed of training from the weight-sharing architectures
or the baselines. We suspect this lack of improvement is
due to the simplicity of the environment.

HalfCheetah This appears to show the Commander-1-
Controller-2 network is outperformed by the Commander-
2-Controller-1 and baseline networks in overall perfor-
mance. There is however little to distinguish between the
Commander-2-Controller-1 and baseline architectures, with
the Commander-2-Controller-1 perhaps doing better ini-
tially, and the baseline showing signs of improving past the
Commander-2-Controller-1 after the 1 million simulation
steps shown. Despite this, the overlapping variances of
all three architectures make it hard to claim any statisti-
cally significant superiority of one over the rest, in speed or
performance.
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The lack of improvement in the HalfCheetah is perhaps not
surprising if indeed the weight-sharing architecture enables
better learning of structurally equivalent parts. This is due
to the observation that the motions of the front and back
legs of the HalfCheetah are in fact extremely dissimilar (one
can inspect Figure 1b to infer this). In a close to optimal
performance, the forward leg makes huge leaps, while the
rear leg only pushes forward.

Humanoid The humanoid appears to show some im-
proved performance from implementing weight-sharing,
with the baseline consistently performing worse than the
Commander-2-Controller-1 architecture, and significantly
worse than the Commander-1-Controller-2. For neither
weight-sharing model however, does the speed of training
appear to be improved.

We suspect that the reason for the Commander-1-Controller-
2 network outperforming the Commander-2-Controller-1
network for the humanoid is that the humanoid requires
more complex low-level control for its limbs and thus ben-
efits from the additional layer in the controllers that the
Commander-1-Controller-2 network provides.

Ant The Ant environment appears to show noticeable im-
provements from implementing our proposed architectures
in terms of its overall performance. The performance bene-
fits significantly from implementing either weight-sharing
architectures over the baseline, achieving positive rewards
that steadily increase over the 1 million simulation steps.
The baseline architecture in contrast appears to reach its
maximum potential at around 400,000 steps and never
achieves an average return above 0. Again however, there
is no speed benefit from introducing the weight-sharing.

It is particularly interesting that the addition of shared
weight controllers improves the performance on the Ant
environment the most. It could be argued it was the most
theoretically promising candidate for the architecture, as it
is a symmetric robot with 4 identical legs that must operate
in very similar fashions in order to form a coherent walking
motion. The improvement on the Humanoid environment
in addition to the Ant, even evident across 10 seeds, demon-
strate that our proposed architecture is a promising concept
for robotic locomotion.

5.2. Restricting Command Bandwidth

In coursework 3 we argued that our architecture can be
interpreted as a higher level commander calculating and
sending high level commands lower level controllers which
then output the low level actions. Until now the dimen-
sionality of those commands is equal to the dimensionality
of each controllers hidden dimensionality. For example,
the ant’s command bandwidth has a dimensionality of 32.
Since high level commands should per definition not be too
detailed our following experiments introduce a bottleneck
between the commander and the controllers.

Before experimenting with the bottleneck, we extend
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Figure 5. Runs with and without bottleneck in the Ant environ-
ment. At the top each run individually has been smoothed with
the same rolling window mean as in Figure 3.

our ensemble of network architectures to Commander-2-
Controller-2. This is a combination of both previously
proposed architectures as there is now one hidden layer in
the commander and in the controllers, in addition to the
branching layer where we enforce the bottleneck. As a re-
sult the network now has four layers in total. This increases
the overall parameter count drastically, which in turn gets
decreased by introducing a bottleneck. In our experiments
the performance of the four-layer architecture without in-
troducing a bottleneck did not differ from the three-layer
architectures mentioned above.

Based on the four layer network, we introduce three dif-
ferent bottleneck sizes by reducing the hidden units of the
branching layer to decrease the dimensionality of the com-
mand bandwidth from 32 to eight, four and two. On ten
runs, significant differences in performance are not visi-
ble for the eight and four dimensional bottlenecks. The
two dimensional bottleneck, when evaluated with the same
metrics as used in figure 3, shows an average performance
worse by a large magnitude and its 25-75-percentile area
spans nearly the whole reward space (plot not included).
We investigate this by displaying the individual seeded runs
in figure 5 (top). It shows that the bottleneck runs can be
categorized into failing and succeeding runs. The failing
runs keep deteriorating over time until they land at a reward
of −3000, which is two or three times worse than the worst
baseline result. In contrast, nearly every single succeeding
run shows an improved performance over the Commander-
1-Controller-2 and Commander-2-Controller-2 runs. This
means that the two dimensional bottleneck Commander-2-
Bottleneck-Controller-2 is the best performing network on
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the ant, if the evaluation metric is a best case average. In
figure 5 (bottom) the raw return of the single best runs of
each network confirms this impression. Even while both
non-bottleneck networks’ runs peak slightly higher, the bot-
tleneck network is the only one able to visibly reduce its
evaluation variance within a single run. For all other of the
best six bottleneck runs, the plot looks similar.

This shows that commander and controller can communi-
cate with low dimensional high level commands; and if
a communication can be learned, the overall performance
is even better than without the imposed bottleneck. We
suspect that by enforcing a useful regime, we reduce the
space of suitable policies, effectively reducing the chance
of finding any sufficient policy. But if a useful policy can be
found, the regime seems have a lock-in effect and therefore
reduces the variance within that run.

6. Related Work
Sharma & Kitani (2018) observed that robot locomotion is
often of cyclic nature. Thus, they introduced phase paramet-
ric policy and value networks in order to explicitly enforce a
cyclic structure within the policy and value spaces available
to an agent, thus encouraging learning to conform to this
successful cyclic regime. They found their implementation
of phase-DDPG improved upon the evaluated reward of
their baseline by up to ∼50% on the Mujoco Walker2d task.
A natural walking motion stems mostly from the phased
co-ordination of similar motions in each leg, which our
shared network structure may adopt even without the en-
forced cyclic behaviour in Sharma & Kitani (2018). This
would occur by the controllers learning low-level control
with the fully connected commander governing the cyclic
co-ordination. Combining these approaches in some way
would certainly be an interesting endeavour for future work,
for example by enforcing the phase parameterization on the
controller alone.

Heess et al. (2016) introduce a hierarchical network struc-
ture with high level and low level controllers embedded in
a recurrent neural network such that the communication is
constrained by time slots. In contrast to our work, the low
level controllers are not designed to fit specific structural
parts of a robot. Instead they focus on transfer learning
between tasks for the same robot. They assume that the
learned low level controllers are invariant to the high level
task like walking, searching or escaping a maze. They
show that by transferring low level controllers to a new
task for the same robot , the performance can be acceler-
ated and improved on that task. The performance gap is
higher the more complex the new task is; some even can
not be learned without transfer learning. Similarly, our ap-
proach, especially with the bottleneck, can be interpreted as
a high-level-low-level communication with instantaneous
transfer learning between shared low level controllers that
are responsible for equivalent structures in a robot: what is
true for one leg, should also be learned for all legs. Also,
we come to the same conclusion, namely that especially

complex tasks profit from this transfer learning.

Our proposal of the commander-controller network archi-
tecture was inspired by the use of controllers such as PID
or MPC in control theory. While we learn the controllers
as part of out network it is also possible to combine deep
reinforcement learning with these controllers. Wang et al.
(2007) proposed an adaptive PID controller design, where
the parameters of the PID controller are tuned on-line by
an actor-critic reinforcement learning system. In contrast to
our approach, they only tune the controller’s parameters and
the reference trajectory is given. An interesting approach
could be to also generate the trajectory with a RL system.
We could for example, replace our low-level controllers
with PID controllers, which then receive the reference joint
angles and output torques based on the current joint angles.

7. Conclusion and Future Work
In this report, we proposed a novel policy network archi-
tecture based on local connectivity and weight sharing for
robot locomotion tasks. Furthermore, we introduced the
the reinforcement learning setting in which we evaluate our
algorithms. Since we cannot use real robots we use Ope-
nAI gyms that use the Mujoco physics engine to simulate
robot-like agents. We gave a detailed description of the
Mujoco environment and the reward function of all four
used agents.

The motivation for our proposed policy architecture is to
make use of structural equivalent parts to speed up training
of reinforcement learning agents and to get better over-
all performance. Our experiments with Walker2d and
HalfCheetah didn’t show an improvement in training speed
and overall performance. We believe that the reasons are
that the control of the legs in 1d is not hard to learn and the
overall coordination is more important. However, we get a
better performance with networks that employ weight shar-
ing for low-level controllers for the Ant and Humanoid envi-
ronments. The reason might be, that the low-level control is
more complex for these environments as the movements are
not restricted to one dimension. Furthermore, we showed
that introducing a bottleneck between the commander and
the controllers can reduce the variability in the peformance.

Our experiments have shown that our proposed architecture
is able to achieve better performances than the baseline in
more complex environments. Therefore, a next step would
be to evaluate it on even more complex environments such
as the new robotics environments in OpenAI gym (Plappert
et al., 2018), which feature, for example, a simulated robot
hand. In these environments, it would be interesting to
experiment with even deeper and wider networks, which
is not really necessary for the Mujoco environments be-
cause they can be solved almost optimally with quite small
networks as has been shown by Henderson et al. (2017).
Another part of future work is to test our policy architec-
tures with other state-of-the-art deep RL algorithms, such
as PPO (Schulman et al., 2017).
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