
Fingerprint Inpainting with Generative Models

s1739461 s1313429 s1771851 (Group 107)

Abstract
We propose and test two generative models to perform inpainting on fingerprint data. These models fill in
missing patches of fingerprint images based on surrounding context. The first uses a deep residual architecture
with a combination of reconstruction loss and adversarial loss, inspired by Generative Adversarial Networks,
thereby encouraging mode selection as opposed to mode averaging. The second model we experiment with is a
PixelCNN++. It produces qualitatively different fingerprint images. We demonstrate that they perform equally
well when classifying inpainted fingerprints from 220 subjects with AlexNet. Our models significantly outperform
the classification of non-inpainted images, which indicates their potential use in modern identification systems
where fingerprints are often partly occluded. Finally, we present an example of a real-world application and a
break-down test of our inpainting models.

1. Introduction

W hile supervised deep learning has shown re-
markable results in many application domains
(Szegedy et al., 2016), semantically labelling

data by hand is time and labour-intensive. As such, the
unsupervised deep learning paradigm, which tries to learn
a suitable representation of data without using any labels,
has seen a new wave of popularity in recent years. Here
we focus our attention on a specific unsupervised task: in-
painting. This was recently demonstrated by Pathak et al.
(2016), who removed large patches from street view im-
ages and used a Convolutional Neural Network (CNN) to
reconstruct the missing pixels. Their primary insight was to
add an adversarial term to the loss function, as inspired by
earlier work on Generative Adversarial Networks (GANs)
Goodfellow et al. (2014). This approach was designed to
encourage mode selection as opposed to mode averaging.
The direct result thereof was more realistic and sharp in-
painting as opposed to blurry inpainting. While inpaint-
ing has been shown to be a relevant feature extractor in the
transfer learning paradigm, owing to time constraints we
do not consider this aspect in this research.

Generative models are a particularly powerful set of unsu-
pervised learning techniques that learn a low-dimensional
representation of the data and sample from this to produce
new data. The idea is that the new data exists in close vicin-
ity to the training data on a high-dimensional hyper-plane
specific to the problem domain. GANs are recognised as
the current state-of-the-art for such generative tasks and
have been shown to produce convincingly realistic images
by learning data distributions implicitly (e.g. (Radford
et al., 2015)). They can be described as the competition

between a generator, which learns to produce images that
look real, and a discriminator, which learns to discriminate
fake and real images. These two components learn in uni-
son. Cao & Jain (2018) showed that GANs alone can pro-
duce random, fake fingerprints virtually indistinguishable
from real ones.

GANs often show unstable learning behaviours; an alterna-
tive class of generative models are autoregressive models.
These estimate data distributions explicitly by minimising
the negative log-likelihood of some well-formulated prob-
ability distribution estimation. One such model, the Pixel-
CNN++ (Salimans et al., 2017), generates images pixel by
pixel by decomposing the probability density over colours
as conditionals on previously generated pixels. They are,
however, notoriously slow to train.

In our earlier work (Group107, 2018), we provided an au-
toencoder baseline for the inpainting task on fingerprint
images. We achieved somewhat disappointing results be-
cause the autoencoder alone did not perform mode selec-
tion; instead, it mostly produced averaged-out, grey pix-
els, resulting in blurry images. In this work, we aim to
improve inpainting performance by using a combination of
deep Residual Neural Networks (ResNets) (He et al., 2016)
and GANs, as well as a PixelCNN++. We show that the
inpainting results are much more accurate with such mod-
els, and demonstrate how to quantify their relative perfor-
mance by solving a classification problem using inpainted
and non-inpainted fingerprints. We run two final experi-
ments: First, we intentionally mask poor-quality fingerprint
regions, showing how these can be inpainted to “fix” the
fingerprints, and second, we perform a break-down test by
inpainting iteratively larger masked regions.



Fingerprint inpainting, 2018

Section 2 briefly discusses the fingerprint data set. Sec-
tion 3 and Section 4 introduce the GAN and PixelCNN++
inpainting models respectively. We compare these models
by means of a classification task in Section 5. Finally, we
test our model on a real-world application in Section 6 and
perform a breakdown study in Section 7.

2. Data: Fingerprints
We have provided a detailed description of the fingerprint
datasets we use herein in our previous work (Group107,
2018). Thus, we only provide a brief summary of this de-
scription in what follows.

2.1. Overview

From smart-phone authentication to evidence in criminal
trials, fingerprints are ubiquitous in modern biometric sys-
tems. However, the images at hand are a challenge in deep
learning since they suffer from high intra-class variation
(owing to varying skin moisture, scanning deviations, arte-
facts from ageing, etc.) and low inter-class variation (i.e.,
fingerprints often look similar). As such, modern finger-
print matching technology typically relies on heuristic al-
gorithms (Maltoni et al., 2009). These look to extract a
combination of three levels of features: (1) The overall
shape of the fingerprint, (2) the minutiae points, namely
where the ridge lines either come to an end (ridge-ending)
or split in two (bifurcation), and (3) the sweat pores visible
on the ridges of the fingerprint. We show that our inpaint-
ing can often reproduce the first two features. The third
feature requires high resolution scanners and is often not
available; it is not inpainted by our model.

2.2. The Data

There are several fingerprint datasets available for direct
download or via request. We obtained a number of these in
our earlier work. It is important to note that those datasets
only contain a small number (eight maximum) of finger-
prints per class, i.e per finger.

Figure 1. Examples of fingerprint crops with four random
patches.

A detailed description of the data we have used to construct
suitable datasets for this research can be found in Group107
(2018). Owing to the insights gained through this earlier re-
search, we have made several changes regarding the usage
of the data described therein:

1. Input data size. We are now using 128 × 128 pixel
crops of the fingerprints instead of 384×288 pixel full
fingerprints. This is because our earlier work showed
that a wider context did not improve inpainting per-
formances. Moreover, the smaller input image sizes
allowed us to fit deeper models on the GPU memory.

2. Data standardisation. In our earlier work we stan-
dardised fingerprints on a dataset level, because they
each used different scanners. The abovementioned
cropping made this step less relevant, so we now fol-
low a simple approach of rescaling the data to the
range [−1, 1]. We match this scale in the output im-
ages by using tanh activation function in the final
layer of our generative models.

3. Patching. We have set the patching protocol to place
four patches of size 32× 32 pixels.

4. Data split. Two of the original databases were held
out as validation and test data, to ensure that the in-
painting is invariant to the physical scanner used dur-
ing data collection. The validation set is used for com-
parison in Sections 3 and 4, and both sets are used for
the classification task in Section 5.

No other changes from our earlier work have been made to
the data. Figure 1 gives examples of the 128× 128 patched
fingerprint crops used as input data throughout this work.
Note that many of the images displayed in this work are
of full fingerprints as opposed to those shown in Figure 1.
These are computed by processing overlapping regions of
128 × 128 pixels and averaging the resultant output, using
soft contributions at the region edges.

3. Experiment 1: GAN Inpainting
3.1. Description

In our earlier work on fingerprint inpainting we used
a patch autoencoder which produced blurry regions
(Group107, 2018). This was mostly due to the limited
depth of the model and to the autoencoder prioritising
“mode averaging” rather than “mode selection”. In other
words, the autoencoder often found that predicting an av-
erage pixel value (grey) would result in a lower recon-
struction error. Pathak et al. (2016) proposed to include
a GAN component to the inpainting pipeline for that very
purpose. What follows in this section describes how we



Fingerprint inpainting, 2018

implemented a ResNet as the generator component for a
GAN, and encouraged mode selection which improved in-
painting.

3.2. Implementation

After some preliminary hyper-parameter search, we de-
cided to use the architecture shown in Figure 2 for the
ResNet generator and discriminator. Deeper architectures
were shown to yield a lower reconstruction loss (Group107,
2018), and so we used the deepest architecture that would
fit on the GTX 1060 GPU used. We then focused our ex-
perimentation on the addition of an adversarial loss.

Figure 2. (a) and (b) are the ResNet architectures for the generator
and discriminator components of the GAN. For each convolution
we show the respective kernel size, number of output channels
and stride length used.

Figure 2 (a) illustrates the ResNet generator architecture we
used for this work, while Figure 2 (b) is the architecture of
the discriminator component of the GAN. Note that the dis-
criminator has a skip connection from the input layer to the
fully-connected output layer. Its architecture, including the
small residual skip connection length, was found through a
brief hyper-parameter search. Each building block shown
in Figures 2 (a) and (b) consists of a convolution, leaky
ReLU activation and batch normalisation.

The output of the generator component – an inpainted fin-
gerprint – is used as input to the discriminator network
shown in Figure 2 (b) to compute the adversarial loss,
which we define in what follows. Let G(x(i)) be the the
inpainted images that are produced by the generatorG, x(i)

0

be the original images, and x(i) be the patched images. For
a batch of sizeM , the “fake” imagesG(x(i)) and the “real”
images x

(i)
0 are both run through the discriminator D and

classified. The adversarial loss is then defined as the nega-
tive cross-entropy (Goodfellow et al., 2014):

Ladv =
1

M

M∑
i=1

[
log(D(x

(i)
0 )) + log(1−D(G(x(i))))

]
(1)

The arguments of the log terms being probabilities, we have
Ladv ≤ 0 and intuitively the generator and discriminator
play a ”mini-max” game on it respectively. This adversarial
loss term is then added to a reconstruction loss Lrecon, for
which we used the Huber Loss (Huber, 1964), to yield the
loss LG of the generator component:

LG = λadvLadv + λreconLrecon (2)

The discriminator loss LD is given by (Goodfellow et al.,
2014):

LD = − 1

M

M∑
i=1

[
log(1−D(G(x(i))))

]
(3)

The generator loss LG and discriminator loss LD are op-
timised in turn for each batch. Both training losses were
optimised via the Adam Optimizer with a small learning
rate decay of 2.5× 10−4 % per training step.

The main hyper-parameters that have influence over the
success or failure of the addition of adversarial loss are the
loss mixing coefficients λrecon and λadv for reconstruc-
tion and adversarial losses, respectively (see Equation 2).
We tested many combinations of these over several weeks,
three of which are compared to a ResNet without adversar-
ial loss in the following section.

3.3. Results

Figure 3 shows the validation reconstruction losses be-
tween original, non-patched images and inpainted images
for different values of λadv , where we kept λrecon = 1 con-
stant. In addition, we also included a model with λadv = 0
to show how the model would train without a GAN compo-
nent. All the λadv values are kept extremely small because
we quickly found out that larger values would result in ba-
sically no reconstruction at all.

By looking at Figure 3 and the qualitative images between
inpainted images, we conclude that λadv = 2 × 10−6 and
λrecon = 1 performs best, with the exception of the pure
ResNet autoencoder. This is to be expected, as the ResNet



Fingerprint inpainting, 2018

0 25 50 75 100 125 150 175 200
Epoch Number

0.02

0.03

0.04

0.05

0.06

H
u

b
er

L
os

s

λadv = 4× 10−4

λadv = 2× 10−6

λadv = 4× 10−6

No GAN

Figure 3. Huber Loss on the validation set for inpainting recon-
structions with different values of λadv , as well as without the
adversarial loss component (λadv = 0). A smoothing function is
used to reduce the jitter of these curves.

autoencoder’s aim is to reconstruct the patched pixels, un-
like the adversarial models which also aim to generate real-
istic patches. In fact, while the model without GAN yields
a lower loss, it doesn’t yield images that are as visually
sharp.

The inpainting performance of the aforementioned best
GAN model is demonstrated in Figure 4 (e) and (f). While
the inpainted patches are somewhat blurry, the generated
lines are clearly recognisable as the contrast between ridges
and valleys is much more prevalent than in our previous
work (Group107, 2018).

4. Experiment 2: PixelCNN++ Inpainting
4.1. Description

A PixelCNN (van den Oord et al., 2016) is an image den-
sity model that uses autoregressive connections to model
images pixel by pixel. The basic idea is to decompose the
image distribution as a product of conditionals:

p(x) =

n2∏
i=1

p(xi | x1, ..., xi−1) (4)

where n is the image dimension and is 128 in our case.

A PixelCNN learns a distribution over the entire colour-

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. (a) and (b) are original fingerprints selected from the
validation set. (c) and (d) are the same fingerprints after apply-
ing patches that cover up to 25% of the images. (e) and (f) are
inpainted using the generator component of the GAN set-up. (g)
and (h) are the inpainted results using the PixelCNN++.



Fingerprint inpainting, 2018

space for each pixel. This approach does not leverage
the knowledge that similar colours will have similar likeli-
hoods of being present. This and several other pitfalls mo-
tivated the advances that resulted in the crafting of the Pix-
elCNN++ (Salimans et al., 2017), which models the colour
of each pixel as a mixture of K logistic sigmoid functions
(K = 10 in the original paper). Thus, for any given pixel,
the PixelCNN++ models:

p(xi|πi, µi, si, x<i) =

K∑
j=1

πij

[
σ

(
xi + 0.5− µij

sij

)
−

σ

(
xi − 0.5− µij

sij

)]
(5)

where xi is the pixel colour being estimated, πij is the fac-
tor for the jth logistic sigmoid for the ith pixel, µij is the
mean of the jthlogistic sigmoid, sij is the scale thereof, and
σ is the logistic sigmoid function. Furthermore, the colour
channels are linked so that the green channel depends lin-
early on Equation 6 and the value of the estimated red chan-
nel, while the blue channel depends on its estimation and
a linear combination of the red and green channels. Ow-
ing to the grayscale nature of fingerprints, we discard this
component.

All parameters in the neural network and the loss function
that defines the colour of each pixel are learned through the
direct minimization of the negative log-likelihood of Equa-
tion 6, allowing the PixelCNN++ to define a powerful and
flexible relationship between pixel intensities in an image.

4.2. Implementation

Our implementation is largely adapted from the original
PixelCNN++ code published by OpenAI1. Nonetheless,
some changes were needed, such as making the Pixel-
CNN++ gray-scale friendly. We also set K = 3 as the
model needs less flexibility to estimate gray pixels versus
colour pixels. Other than this, the default parameters were
used. The main challenge was the long training time of
such a model, which could be up to over a week on a GTX
1060 GPU. This greatly limited the amount of hyperparam-
eter fine-tuning we could perform.

4.3. Results

We trained a PixelCNN++ model for nearly 60 epochs us-
ing the parameters used in Salimans et al. (2017). We
do not believe that the model has converged at this point,
but the extremely slow training time is prohibitive. Figure
5 demonstrates the bits per dimension loss for the Pixel-
CNN++ training. Bits per dimension is commonly used

1github.com/openai/pixel-cnn

to compare explicit distribution estimators, such as autore-
gressive models, because the log-likelihood is directly ac-
cessible. It is, essentially, the loss per dimension in bits and
is defined as:

bpd =
1

log(2)n2

n2∑
i

−logp(x) (6)

for a single image, x, with n2 pixels. For instance, a value
of bpd = 2.92 was obtained using PixelCNN++ on CIFAR-
10 data (Salimans et al., 2017).

0 10 20 30 40 50 60
Epoch Number

4.0

4.5

5.0

5.5

6.0

6.5

B
it

s
P

er
D

im
en

si
on

PixelCNN++, train

PixelCNN++, valid

Figure 5. Bits per dimension loss for inpainting reconstructions
using PixelCNN++.

The minimum validation bits per dimension we obtained
was 3.74; it was at this point that the model was frozen and
used for the inference tests of the following sections. Inter-
estingly, the validation loss is lower than the training loss.
This might be attributed to the fact that the held out valida-
tion data represents ‘easier’ fingerprints to model, but most
likely is the result of strong regularisation during training
but not for inference (i.e. dropout).

Figure 4 (g) and (h) give examples of the inpainting using
PixelCNN++ on randomly placed patches. The quality of
the inpainting is different from that of the GAN-based in-
painting. In particular, the PixelCNN++ inpainting seems
more noisy and “pixelated”. The autoregressive nature of
this approach means that the reconstruction errors com-
pound from top to bottom (owing to the PixelCNN++ con-
ditioning on pixels above in its receptive field). Nonethe-
less, the inpainting using PixelCNN++ is certainly able to

github.com/openai/pixel-cnn


Fingerprint inpainting, 2018

complete regions in a realistic fashion. The main advantage
this autoregressive model has over an adversarial approach
is that the resultant inpainting is not blurry. Upon close in-
spection it becomes evident that the ridge-valley line com-
pletions are more true to the original fingerprint when us-
ing the PixelCNN++. However, the associated speckle-type
noise is a clear drawback compared to the smooth lines the
GAN ResNet generates.

5. Experiment 3: Classification
5.1. Description

As mentioned previously, finding a metric to evaluate the
quality of the inpainting task can be challenging. This is be-
cause the loss function does not necessarily indicate that the
relevant features of the fingerprints have been inpainted.
Here, we define “relevant” features as those features which
can be used to discriminate one finger from another. Intu-
itively, this may correspond to the overall shape of the fin-
gerprint and its minutiae points (see Section 2.1), although
it is not constrained to be just those.

One simple way of quantifying the quality of our inpaint-
ing model is to run a classification task on patched images,
both with and without inpainting. We expect the classi-
fier to perform better on the inpainted images if the regions
have been filled in with relevant features. Note that in this
experiment we are not concerned about getting a state-of-
the-art classification accuracy across classes. Indeed our
approach is not amenable to real-world classification, since
there could be millions of fingerprints in a given database,
each of which would need to be a class in our classifier
network. Instead, we are solely interested in the relative
performance of the classifier for different inpainting cases.

5.2. Implementation

We perform a standard classification task on 220 subjects
from datasets that were excluded from training in sections
3 and 4. As previously, there are 8 impressions per sub-
ject, taken by the same scanner but in different conditions,
such as various moisture levels. These conditions are ran-
domised as we split each class into 6, 1, and 1 impressions
for the training, validation and test set respectively. We run
the classifier on four versions of the dataset:

• without patches;

• with patches;

• with patches inpainted with the GAN model; and

• with patches inpainted with the PixelCNN+ model.

The latter three cases were patched using 27 patches of size
32x32 pixels, with overlapping allowed. This corresponds

to a maximum of 25% of the total area of the input images,
which are cropped 374x300 pixels (see Group107 (2018)).

Since we do not have much data and are interested in the
relative classification accuracy, we consider a fairly super-
ficial model: AlexNet (Krizhevsky et al., 2012). We im-
plement this architecture exactly as per the original paper,
which most notably splits the 2nd, 4th and 5th convolutional
layers into two groups, in order to reduce the number of
parameters. We train this model with the Adam Optimizer
and a decaying learning rate. This converges in about one
hour on a GTX 1060 GPU.

The small number of images per class poses a serious chal-
lenge when training a deep CNN. We propose two solu-
tions. First, we augment the input images with a random
±20 degree rotation. Then, we perform cross validation on
the training and validation sets: we perform 7 training runs,
each using different images for the validation set. This al-
lows us to average the validation accuracy across all those
runs when comparing different cases of inpainting.

5.3. Results

The final validation accuracies, when averaged over all
cross-correlation runs, are shown in Figure 6. All training
runs (not shown in that particular figure) converge quickly
to 100% training accuracy, which is a sign of overfitting.
This was expected owing to the small number of finger-
print impressions per class. In fact, there are so few ex-
amples that even with data augmentation our shallow ar-
chitecture is data-starved, meaning it can remember some
of the training data without necessarily learning a relevant
representation thereof.

Considering the above, it may seem counter-intuitive to try
to classify fingerprints given the data we have access to.
The reader is thus reminded, however, that this experiment
is intended to show the relative performance of fingerprint
inpainting procedures.

While the absolute validation accuracies are not particu-
larly high, the relationship between those curves demon-
strates the value of our inpainting models. Indeed, the ac-
curacy is increased by over one third when inpainting the
missing patches, which means that some relevant features
for classification were inpainted correctly. The GAN and
PixelCNN+ inpainting seemed to perform similarly well.

6. Real-World Use Case
To test the real-world applicability of the models learned
through this research, we apply them to fingerprints where
regions have been manually identified for replacement.
These regions typically correspond to wrinkles or acquired
scars, and may not be present in the fingerprints of the same



Fingerprint inpainting, 2018

0 25 50 75 100 125 150 175 200
Epoch Number

0

5

10

15

20

25
V

al
id

at
io

n
A

cc
u

ra
cy

(%
)

Original

Patched

GAN

PixelCNN++

Figure 6. Validation accuracies for patched fingerprints with and
without inpainting. These curves are averages of 7 cross corre-
lated runs. The classification accuracy without any patching is
also shown as a baseline. A smoothing function is used to reduce
the jitter of these curves.

finger in a database. Examples can be seen in Figure 7.

Of course this inpainting procedure of poor-quality regions
would not necessarily improve the classification accuracy
of the fingerprints, should all impressions in the dataset
contain the same wrinkles/scars, for instance. This remains
to be explored as future work, however. Nonetheless, the
reconstruction is highly encouraging in that the continuity
of both inpainting approaches is good, resulting in realistic
‘wrinkle-free’ fingerprints.

7. Break-down Testing
The models we train must learn to leverage the surrounding
context in order to perform inpainting. It is not immedi-
ately clear, however, how close the context must be to the
inpainted pixels in order to be effective. A simple break-
down test is demonstrated in this section, as we inpaint a
central patch of increasingly larger sizes, in order to assess
at what point the inpainting procedures fail. This is demon-
strated in Figure 8.

It can be seen that breakdown occurs at approximately the
same patch size that was used for training, which is some-
what expected. However, it is also evidence that much
of the advantage gained over our earlier work (Group107,
2018) is owing to the much deeper ResNet architecture em-
ployed instead of the adversarial loss that used to assist in

Figure 7. Real-world use case: fingerprints intentionally patched
to encourage reconstructions in poor-quality regions. From left
to right: original fingerprint, manually patched, GAN inpainting,
and PixelCNN inpainting.

training the generative component of the GAN. Indeed, a
GAN alone would inpaint the squares with realistic finger-
print features even without any context. Interestingly, the
GAN ResNet tends to merge lines together when the in-
painting is ambiguous, which is often not the case in the
real fingerprint counterpart.

The PixelCNN++ inpainting, however, fails in a fashion
consistent with the autoregressive structure of the model.
That is, each pixel is conditioned on those above it in a
convolutional manner. This receptive field structure means
that regions at the lower end of the patches in Figure 8 are
more noise-prone. Overall, the GAN ResNet can inpaint
larger regions than the PixelCNN++.

8. Conclusion
In this report we demonstrated the inpainting performance
of a ResNet autoencoder with an adversarial loss and a Pix-
elCNN++ model on a dataset of patched fingerprints. For
the former model, we explored different weightings of the
adversarial loss component, while we used standard param-
eters for the latter model. Both models showed promis-
ing inpainting performances: the adversarial model gen-
erated realistic but blurry patches, while the PixelCNN++
resulted in sharper but more pixelated inpainting. We eval-
uated the inpainting performances of both approaches by



Fingerprint inpainting, 2018

framing a classification problem. Classifiers trained on fin-
gerprints inpainted via both models worked similarly well
and much better than a classifier trained on the patched fin-
gerprints, albeit not as good as one trained on the original,
non-patched fingerprints.

We have considered the real-world applications of our
methods, in particular their use in denoising poor-quality
fingerprints. This has a direct application in auto-
completion of partial latent fingerprints in the field of crim-
inal investigation. Lastly, we tested the robustness of our
inpainting model by inpainting increasingly large patches.
We found that the inpainting performance starts to become
unreliable when the patch size becomes bigger than the
patch sizes used in the training data.

The results of this particular work are encouraging and
could, given minor adjustments, have some direct applica-
tions for the biometric sciences. However, due to the com-
plexity of the models, there is much that we have not exper-
imented with and which could be the basis for future work.
For instance, if we were to continue this work, we would
aim to use a siamese architecture for determining whether
fingerprints originate from the same source. Albeit a pos-
sibly combinatorial rephrasing of the fingerprint classifica-
tion problem, this is how current state-of-the-art fingerprint
identification systems work. Moreover, posing the problem
as such would circumvent the issue of low numbers of data
samples per class.

If there was more time, we would have also liked to add
an adversarial loss to the PixelCNN++ and blend our two
presented approaches together. This is fundamentally dif-
ficult owing to the differences in how these models esti-
mate data distributions and is thus interesting for general
domains too.

The inpainting models could also be used as data-
augmenters for deep learning classification. One could
augment the entire image patch by patch and get an output
fingerprint without scars or line discontinuities. One could
also use our ResNet encoder model as a feature extractor
and transfer the representation learned across datasets. At
last, we would also like to test our model more thoroughly
by showing how much context is actually used during in-
painting. Perhaps a context much smaller than 128x128
yields satisfactory inpainting, thereby allowing for deeper
model or faster training.

9. Acknowledgements
Our Python TensorFlow codebase was partly adopted
from the Machine Learning Practical GitHub
(https://github.com/CSTR-Edinburgh/
mlpractical) and amended with inspira-
tion from Antreas Antoniou’s GitHub (https:

Figure 8. Breakdown test for incrementally larger patches. From
left to right: fingerprints with patches, GAN processed result, and
PixelCNN++ processed result.

//github.com/AntreasAntoniou).

https://github.com/CSTR-Edinburgh/mlpractical
https://github.com/CSTR-Edinburgh/mlpractical
https://github.com/AntreasAntoniou
https://github.com/AntreasAntoniou


Fingerprint inpainting, 2018

References
Cao, Kai and Jain, Anil K. Fingerprint synthesis: Evaluat-

ing fingerprint search at scale. 2018.

Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu,
Bing, Warde-Farley, David, Ozair, Sherjil, Courville,
Aaron, and Bengio, Yoshua. Generative adver-
sarial nets. In Ghahramani, Z., Welling, M.,
Cortes, C., Lawrence, N. D., and Weinberger, K. Q.
(eds.), Advances in Neural Information Processing
Systems 27, pp. 2672–2680. Curran Associates, Inc.,
2014. URL http://papers.nips.cc/paper/
5423-generative-adversarial-nets.pdf.

Group107. Mlp coursework 3: Fingerprint inpainting.
2018.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

Huber, Peter J. Robust estimation of a location parameter.
The annals of mathematical statistics, pp. 73–101, 1964.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.
Imagenet classification with deep convolutional neural
networks. In Pereira, F., Burges, C. J. C., Bottou, L.,
and Weinberger, K. Q. (eds.), Advances in Neural Infor-
mation Processing Systems 25, pp. 1097–1105. Curran
Associates, Inc., 2012.

Maltoni, Davide, Maio, Dario, Jain, Anil K, and Prabhakar,
Salil. Handbook of fingerprint recognition. Springer Sci-
ence & Business Media, 2009.

Pathak, Deepak, Krähenbühl, Philipp, Donahue, Jeff, Dar-
rell, Trevor, and Efros, Alexei A. Context encoders:
Feature learning by inpainting. CoRR, abs/1604.07379,
2016. URL http://arxiv.org/abs/1604.
07379.

Radford, Alec, Metz, Luke, and Chintala, Soumith.
Unsupervised representation learning with deep con-
volutional generative adversarial networks. CoRR,
abs/1511.06434, 2015. URL http://arxiv.org/
abs/1511.06434.

Salimans, Tim, Karpathy, Andrej, Chen, Xi, and Kingma,
Diederik P. Pixelcnn++: Improving the pixelcnn with
discretized logistic mixture likelihood and other modifi-
cations. arXiv preprint arXiv:1701.05517, 2017.

Szegedy, Christian, Ioffe, Sergey, Vanhoucke, Vincent, and
Alemi, Alex A. Inception-v4, inception-resnet and the
impact of residual connections on learning. In ICLR
2016 Workshop, 2016. URL https://arxiv.org/
abs/1602.07261.

van den Oord, Aaron, Kalchbrenner, Nal, Espeholt, Lasse,
Vinyals, Oriol, Graves, Alex, et al. Conditional im-
age generation with pixelcnn decoders. In Advances in
Neural Information Processing Systems, pp. 4790–4798,
2016.

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://arxiv.org/abs/1604.07379
http://arxiv.org/abs/1604.07379
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261

